Sequential Computability of a Function. Effective Fine Space and Limiting Recursion

dc.creatorYasugi,Mariko
dc.creatorTsujii,Yoshiki
dc.creatorMori,Takakazu
dc.date2005
dc.date.accessioned2024-02-06T12:54:05Z
dc.date.available2024-02-06T12:54:05Z
dc.descriptionWe consider real sequences in I = [0, 1) and real functions on I. It is first shown that, as for real sequences from I, R-computability (computability with respect to the Euclidean topology) implies “ weak Fine-computability.” Using this result, we show that “ Fine­sequential computability” and “ -sequential computability” are equivalent for effectively locally Fine-continuous functions as well as for Fine-continuous functions.
dc.formattext/html
dc.identifierhttps://doi.org/10.3217/jucs-011-12-2179
dc.identifierhttps://lib.jucs.org/article/28552/
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/8916
dc.languageen
dc.publisherJournal of Universal Computer Science
dc.relationinfo:eu-repo/semantics/altIdentifier/eissn/0948-6968
dc.relationinfo:eu-repo/semantics/altIdentifier/pissn/0948-695X
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsJ.UCS License
dc.sourceJUCS - Journal of Universal Computer Science 11(12): 2179-2191
dc.subjectEffective Fine Space
dc.subjectWeakly Fine-computable Sequence
dc.subjectFine-sequential Computability of a Function
dc.subjectEffective Fine-continuous Function
dc.subjectLimiting Recursion
dc.titleSequential Computability of a Function. Effective Fine Space and Limiting Recursion
dc.typeResearch Article
Файлы