Rationally Additive Semirings

dc.creatorÉsik,Zoltán
dc.creatorKuich,Werner
dc.date2002
dc.date.accessioned2024-02-06T12:51:39Z
dc.date.available2024-02-06T12:51:39Z
dc.descriptionWe define rationally additive semirings that are a generalization of (ω)-complete and (ω)-continuous semirings. We prove that every rationally additive semiring is an iteration semiring. Moreover, we characterize the semirings of rational power series with coefficients in , the semiring of natural numbers equipped with a top element, as the free rationally additive semirings 1.) C. S. Calude, K. Salomaa, S. Yu (eds.). Advances and Trends in Automata and Formal Languages. A Collection of Papers in Honour of the 60th Birthday of Helmut Jürgensen.
dc.formattext/html
dc.identifierhttps://doi.org/10.3217/jucs-008-02-0173
dc.identifierhttps://lib.jucs.org/article/27851/
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/8103
dc.languageen
dc.publisherJournal of Universal Computer Science
dc.relationinfo:eu-repo/semantics/altIdentifier/eissn/0948-6968
dc.relationinfo:eu-repo/semantics/altIdentifier/pissn/0948-695X
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsJ.UCS License
dc.sourceJUCS - Journal of Universal Computer Science 8(2): 173-183
dc.subjectsemiring
dc.subjectcomplete semiring
dc.subjectiteration semiring
dc.subjectfixed point
dc.subjectpower series
dc.titleRationally Additive Semirings
dc.typeResearch Article
Файлы