Rationally Additive Semirings
dc.creator | Ésik,Zoltán | |
dc.creator | Kuich,Werner | |
dc.date | 2002 | |
dc.date.accessioned | 2024-02-06T12:51:39Z | |
dc.date.available | 2024-02-06T12:51:39Z | |
dc.description | We define rationally additive semirings that are a generalization of (ω)-complete and (ω)-continuous semirings. We prove that every rationally additive semiring is an iteration semiring. Moreover, we characterize the semirings of rational power series with coefficients in , the semiring of natural numbers equipped with a top element, as the free rationally additive semirings 1.) C. S. Calude, K. Salomaa, S. Yu (eds.). Advances and Trends in Automata and Formal Languages. A Collection of Papers in Honour of the 60th Birthday of Helmut Jürgensen. | |
dc.format | text/html | |
dc.identifier | https://doi.org/10.3217/jucs-008-02-0173 | |
dc.identifier | https://lib.jucs.org/article/27851/ | |
dc.identifier.uri | https://openrepository.mephi.ru/handle/123456789/8103 | |
dc.language | en | |
dc.publisher | Journal of Universal Computer Science | |
dc.relation | info:eu-repo/semantics/altIdentifier/eissn/0948-6968 | |
dc.relation | info:eu-repo/semantics/altIdentifier/pissn/0948-695X | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | J.UCS License | |
dc.source | JUCS - Journal of Universal Computer Science 8(2): 173-183 | |
dc.subject | semiring | |
dc.subject | complete semiring | |
dc.subject | iteration semiring | |
dc.subject | fixed point | |
dc.subject | power series | |
dc.title | Rationally Additive Semirings | |
dc.type | Research Article |