Modular Range Reduction

dc.creatorDaumas,Marc
dc.creatorMazenc,Christophe
dc.creatorMerrheim,Xavier
dc.creatorMuller,Jean-Michel
dc.date1995
dc.date.accessioned2024-02-06T12:47:36Z
dc.date.available2024-02-06T12:47:36Z
dc.descriptionA new range reduction algorithm, called ModularRange Reduction (MRR), briefly introduced by the authors in [Daumas et al. 1994] is deeply analyzed. It is used to reduce the arguments to exponential and trigonometric function algorithms to be within the small range for which the algorithms are valid. MRR reduces the arguments quickly and accurately. A fast hardwired implementation of MRR operates in time (log(n)), where n is the number of bits of the binary input value. For example, with MRR it becomes possible to compute the sine and cosine of a very large number accurately. Web propose two possible architectures implementing this algorithm.
dc.formattext/html
dc.identifierhttps://doi.org/10.3217/jucs-001-03-0162
dc.identifierhttps://lib.jucs.org/article/27105/
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/6746
dc.languageen
dc.publisherJournal of Universal Computer Science
dc.relationinfo:eu-repo/semantics/altIdentifier/eissn/0948-6968
dc.relationinfo:eu-repo/semantics/altIdentifier/pissn/0948-695X
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsJ.UCS License
dc.sourceJUCS - Journal of Universal Computer Science 1(3): 162-175
dc.subjectComputer Arithmetic
dc.subjectElementary Functions
dc.subjectRange Reduction
dc.titleModular Range Reduction
dc.typeResearch Article
Файлы