Enclosure Methods for Multivariate Differentiable Functions and Application to Global Optimization

dc.creatorMessine,Frédéric
dc.creatorLagouanelle,Jean-Louis
dc.date1998
dc.date.accessioned2024-02-06T12:49:37Z
dc.date.available2024-02-06T12:49:37Z
dc.descriptionThe efficiency of global optimization methods in connection with interval arithmetic is no more to be demonstrated. They allow to determine the global optimum and the corresponding optimizers, with certainty and arbitrary accuracy. One of the main features of these algorithms is to deliver a function enclosure defined on a box (right parallelepiped). The studied method provides a lower bound (or upper bound) of a function in that box throughout two different strategies. As we shall see, these algorithms associated with various Branch and Bound methods lead to accelerated convergence and permit to avoid the cluster problem.
dc.formattext/html
dc.identifierhttps://doi.org/10.3217/jucs-004-06-0589
dc.identifierhttps://lib.jucs.org/article/27501/
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/7398
dc.languageen
dc.publisherJournal of Universal Computer Science
dc.relationinfo:eu-repo/semantics/altIdentifier/eissn/0948-6968
dc.relationinfo:eu-repo/semantics/altIdentifier/pissn/0948-695X
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsJ.UCS License
dc.sourceJUCS - Journal of Universal Computer Science 4(6): 589-603
dc.subjectglobal optimization
dc.subjectinterval arithmetic
dc.subjectmultivariate functions
dc.subjectbranch and bound algorithm
dc.subjectTaylor s expansion
dc.subjectpolyhedral cone
dc.titleEnclosure Methods for Multivariate Differentiable Functions and Application to Global Optimization
dc.typeResearch Article
Файлы