Ceilings of Monotone Boolean Functions

dc.creatorDunne,Paul
dc.date1996
dc.date.accessioned2024-02-06T12:48:25Z
dc.date.available2024-02-06T12:48:25Z
dc.descriptionThis paper considers a particular relationship defined overpairs of n-argument monotone Boolean functions. The relationship is of interest since we can show that if ( g, h ) satisfy it then for any n-argument monotone Boolean function f there is a close relationship between the combinational and monotone network complexities of the function (f/\g) \/ h. We characterise the class of pairs of functions satisfying the relationship and show that it extends and encapsulates previous results concerning translations from combinational to monotone networks.
dc.formattext/html
dc.identifierhttps://doi.org/10.3217/jucs-002-07-0533
dc.identifierhttps://lib.jucs.org/article/27271/
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/7013
dc.languageen
dc.publisherJournal of Universal Computer Science
dc.relationinfo:eu-repo/semantics/altIdentifier/eissn/0948-6968
dc.relationinfo:eu-repo/semantics/altIdentifier/pissn/0948-695X
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsJ.UCS License
dc.sourceJUCS - Journal of Universal Computer Science 2(7): 533-548
dc.subjectComplexity measures
dc.subjectcombinational networks
dc.subjectmonotone Boolean functions
dc.titleCeilings of Monotone Boolean Functions
dc.typeResearch Article
Файлы