Ceilings of Monotone Boolean Functions
| dc.creator | Dunne,Paul | |
| dc.date | 1996 | |
| dc.date.accessioned | 2024-02-06T12:48:25Z | |
| dc.date.available | 2024-02-06T12:48:25Z | |
| dc.description | This paper considers a particular relationship defined overpairs of n-argument monotone Boolean functions. The relationship is of interest since we can show that if ( g, h ) satisfy it then for any n-argument monotone Boolean function f there is a close relationship between the combinational and monotone network complexities of the function (f/\g) \/ h. We characterise the class of pairs of functions satisfying the relationship and show that it extends and encapsulates previous results concerning translations from combinational to monotone networks. | |
| dc.format | text/html | |
| dc.identifier | https://doi.org/10.3217/jucs-002-07-0533 | |
| dc.identifier | https://lib.jucs.org/article/27271/ | |
| dc.identifier.uri | https://openrepository.mephi.ru/handle/123456789/7013 | |
| dc.language | en | |
| dc.publisher | Journal of Universal Computer Science | |
| dc.relation | info:eu-repo/semantics/altIdentifier/eissn/0948-6968 | |
| dc.relation | info:eu-repo/semantics/altIdentifier/pissn/0948-695X | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.rights | J.UCS License | |
| dc.source | JUCS - Journal of Universal Computer Science 2(7): 533-548 | |
| dc.subject | Complexity measures | |
| dc.subject | combinational networks | |
| dc.subject | monotone Boolean functions | |
| dc.title | Ceilings of Monotone Boolean Functions | |
| dc.type | Research Article |