Equivalent Transformations of Automata by Using Behavioural Automata

dc.creatorCiobanu,Gabriel
dc.creatorRudeanu,Sergiu
dc.date2007
dc.date.accessioned2024-02-06T12:55:56Z
dc.date.available2024-02-06T12:55:56Z
dc.descriptionThis paper uses category theory to emphasize the relationships between Mealy, Moore and Rabin-Scott automata, and the behavioural automata are used as a unifying framework. Some of the known links between Mealy, Moore and RabinScott automata are translated into isomorphisms of categories, and we also show how behavioural automata connect to these automata. Considering the distinction between final and sequential behaviours of an automaton, we define a sequential version of Mealy automata and study its relationship to behavioural automata.
dc.formattext/html
dc.identifierhttps://doi.org/10.3217/jucs-013-11-1540
dc.identifierhttps://lib.jucs.org/article/28880/
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/9523
dc.languageen
dc.publisherJournal of Universal Computer Science
dc.relationinfo:eu-repo/semantics/altIdentifier/eissn/0948-6968
dc.relationinfo:eu-repo/semantics/altIdentifier/pissn/0948-695X
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsJ.UCS License
dc.sourceJUCS - Journal of Universal Computer Science 13(11): 1540-1549
dc.subjectMealy
dc.subjectMoore and Rabin-Scott automata
dc.subjectsemiautomata
dc.subjectbehavioural automata
dc.subjectfinal and sequential behaviours of automata
dc.subjectcategory theory
dc.titleEquivalent Transformations of Automata by Using Behavioural Automata
dc.typeResearch Article
Файлы