Enclosing Solutions of an Inverse Sturm-Liouville Problem for an Impedance

dc.creatorNeher,Markus
dc.date1998
dc.date.accessioned2024-02-06T12:49:23Z
dc.date.available2024-02-06T12:49:23Z
dc.descriptionThis paper is concerned with the reconstruction of an unknown impedance p(x) in the Sturm-Liouville problem with Dirichlet boundary conditions, when only a finite number of eigenvalues are known. The problem is transformed into a system of nonlinear equations. A solution of this system is enclosed in an interval vector by an interval Newton's method. From the interval vector, an interval function [p](x) is constructed that encloses an impedance p(x) corresponding to the prescribed eigenvalues. To make this numerical existence proof rigorous, all discretization and roundoff errors have to be taken into account in the computation.
dc.formattext/html
dc.identifierhttps://doi.org/10.3217/jucs-004-02-0178
dc.identifierhttps://lib.jucs.org/article/27472/
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/7330
dc.languageen
dc.publisherJournal of Universal Computer Science
dc.relationinfo:eu-repo/semantics/altIdentifier/eissn/0948-6968
dc.relationinfo:eu-repo/semantics/altIdentifier/pissn/0948-695X
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsJ.UCS License
dc.sourceJUCS - Journal of Universal Computer Science 4(2): 178-192
dc.subjectInverse Sturm-Liouville problem
dc.subjectEnclosure methods
dc.subjectValidated numerics
dc.titleEnclosing Solutions of an Inverse Sturm-Liouville Problem for an Impedance
dc.typeResearch Article
Файлы