Pedagogical Natural Deduction Systems: the Propositional Case

dc.creatorColson,Loïc
dc.creatorMichel,David
dc.date2007
dc.date.accessioned2024-02-06T12:55:53Z
dc.date.available2024-02-06T12:55:53Z
dc.descriptionThis paper introduces the notion of pedagogical natural deduction systems, which are natural deduction systems with the following additional constraint: all hypotheses made in a proof must be motivated by some example. It is established that such systems are negationless. The expressive power of the pedagogical version of some propositional calculi are studied.
dc.formattext/html
dc.identifierhttps://doi.org/10.3217/jucs-013-10-1396
dc.identifierhttps://lib.jucs.org/article/28861/
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/9495
dc.languageen
dc.publisherJournal of Universal Computer Science
dc.relationinfo:eu-repo/semantics/altIdentifier/eissn/0948-6968
dc.relationinfo:eu-repo/semantics/altIdentifier/pissn/0948-695X
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsJ.UCS License
dc.sourceJUCS - Journal of Universal Computer Science 13(10): 1396-1410
dc.subjectmathematical logic
dc.subjectnegationless mathematics
dc.subjectconstructive mathematics
dc.subjectnatural deduction
dc.subjecttyped λ-calculus
dc.titlePedagogical Natural Deduction Systems: the Propositional Case
dc.typeResearch Article
Файлы