Relativizing Function Classes

dc.creatorGlaßer,Christian
dc.creatorWechsung,Gerd
dc.date2003
dc.date.accessioned2024-02-06T12:52:13Z
dc.date.available2024-02-06T12:52:13Z
dc.descriptionThe operators min?, max?, and #? translate classes of the polynomial-time hierarchy to function classes. Although the inclusion relationships between these function classes have been studied in depth, some questions concerning separations remained open. We provide oracle constructions that answer most of these open questions in the relativized case. As a typical instance for the type of results of this paper, we construct a relativized world where min_P #?NP, thus giving evidence for the hardness of proving min?P #?NP in the unrelativized case. The strongest results, proved in the paper, are the constructions of oracles D and E, such that min_coNPD #?PD NPD coNPD and UPE = NPE min?PE #?PE.
dc.formattext/html
dc.identifierhttps://doi.org/10.3217/jucs-009-01-0034
dc.identifierhttps://lib.jucs.org/article/27926/
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/8286
dc.languageen
dc.publisherJournal of Universal Computer Science
dc.relationinfo:eu-repo/semantics/altIdentifier/eissn/0948-6968
dc.relationinfo:eu-repo/semantics/altIdentifier/pissn/0948-695X
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsJ.UCS License
dc.sourceJUCS - Journal of Universal Computer Science 9(1): 34-50
dc.subjectpolynomial-time hierarchy
dc.subjectfunction classes
dc.subjectoracle separations
dc.titleRelativizing Function Classes
dc.typeResearch Article
Файлы