A Canonical Model Construction for Substructural Logics

dc.creatorIshihara,Hajime
dc.date2000
dc.date.accessioned2024-02-06T12:50:29Z
dc.date.available2024-02-06T12:50:29Z
dc.descriptionIn this paper, we introduce a class of substructural logics, called normal substructural logics, which includes not only relevant logic, BCK logic, linear logic and the Lambek calculus but also weak logics with strict implication, and de ne Kripke- style semantics (Kripke frames and models) for normal substructural logics. Then we show a correspondence between axioms and properties on frames, and give a canonical construction of Kripke models for normal substructural logics. 1 C.S.Calude and G.Stefanescu (eds.). Automata, Logic, and Computability. Special issue dedicated to Professor Sergiu Rudeanu Festschrift.
dc.formattext/html
dc.identifierhttps://doi.org/10.3217/jucs-006-01-0155
dc.identifierhttps://lib.jucs.org/article/27643/
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/7707
dc.languageen
dc.publisherJournal of Universal Computer Science
dc.relationinfo:eu-repo/semantics/altIdentifier/eissn/0948-6968
dc.relationinfo:eu-repo/semantics/altIdentifier/pissn/0948-695X
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsJ.UCS License
dc.sourceJUCS - Journal of Universal Computer Science 6(1): 155-168
dc.subjectsubstructural logics
dc.subjectlinear logic
dc.subjectrelevant logics
dc.subjectstrict implication
dc.subjectKripke-type semantics
dc.subjectcanonical model
dc.titleA Canonical Model Construction for Substructural Logics
dc.typeResearch Article
Файлы