Publication:
Kinks in higher-order polynomial models

Дата
2022
Авторы
Blinov, P. A.
Gani, T. V.
Malnev, A. A.
Gani, V. A.
Sherstyukov, V. B.
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт общей профессиональной подготовки (ИОПП)
Миссией Института является: фундаментальная базовая подготовка студентов, необходимая для получения качественного образования на уровне требований международных стандартов; удовлетворение потребностей обучающихся в интеллектуальном, культурном, нравственном развитии и приобретении ими профессиональных знаний; формирование у студентов мотивации и умения учиться; профессиональная ориентация школьников и студентов в избранной области знаний, формирование способностей и навыков профессионального самоопределения и профессионального саморазвития. Основными целями и задачами Института являются: обеспечение высококачественной (фундаментальной) базовой подготовки студентов бакалавриата и специалитета; поддержка и развитие у студентов стремления к осознанному продолжению обучения в институтах (САЕ и др.) и на факультетах Университета; обеспечение преемственности образовательных программ общего среднего и высшего образования; обеспечение высокого качества довузовской подготовки учащихся Предуниверситария и школ-партнеров НИЯУ МИФИ за счет интеграции основного и дополнительного образования; учебно-методическое руководство общеобразовательными кафедрами Института, осуществляющими подготовку бакалавров и специалистов по социо-гуманитарным, общепрофессиональным и естественнонаучным дисциплинам, обеспечение единства требований к базовой подготовке студентов в рамках крупных научно-образовательных направлений (областей знаний).
Выпуск журнала
Аннотация
We consider a family of field-theoretic models with a real scalar field in (1+1)-dimensional space-time. The field dynamics in each model is determined by a polynomial potential with two degenerate minima. We obtain exact general formulas for kink solutions with power-law asymptotic behavior. We also write out formulas for the asymptotics of all found kinks. In addition, we analyze some other properties of the obtained kinks: stability potentials, zero modes, positions of the centers of mass.
Описание
Ключевые слова
Цитирование
Kinks in higher-order polynomial models / Blinov, P.A. [et al.] // Chaos, Solitons and Fractals. - 2022. - 165. - 10.1016/j.chaos.2022.112805
Коллекции