Publication:
The Solution to the Problem of Classifying High-Dimension fMRI Data Based on the Spark Platform

Дата
2021
Авторы
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт интеллектуальных кибернетических систем
Цель ИИКС и стратегия развития - это подготовка кадров, способных противостоять современным угрозам и вызовам, обладающих знаниями и компетенциями в области кибернетики, информационной и финансовой безопасности для решения задач разработки базового программного обеспечения, повышения защищенности критически важных информационных систем и противодействия отмыванию денег, полученных преступным путем, и финансированию терроризма.
Выпуск журнала
Аннотация
© 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.This paper compares approaches to solving the classification problem based on fMRI data of the original dimension using the big data platform Spark. The original data is 4D fMRI time series with time resolution (TR) = 0.5 s for one sample recording. Participants have to solve 6 tasks, requiring activating various types of thinking, during 30 min session. A large number of subjects and a short time resolution generated the dataset with more than 86 000 samples, which allowed applying machine learning methods to solve this problem, instead of classical statistical maps. The random forest model was used to solve the binary classification problem. The paper analyzes model performance dependence upon time during the problem solving sessions. Evidence has been obtained that there is some limited time required for solving the same type of problems, and if more time is spent, this is due to the fact that the brain does not instantly get involved in the work on the proposed task, but it is still staying at resting state for some time.
Описание
Ключевые слова
Цитирование
The Solution to the Problem of Classifying High-Dimension fMRI Data Based on the Spark Platform / Efitorov, A. [et al.] // Studies in Computational Intelligence. - 2021. - 925 SCI. - P. 58-64. - 10.1007/978-3-030-60577-3_6
Коллекции