Publication: Using statistical analysis to fine-tune the results of knapsack-based computational platform benchmarking
dc.contributor.author | Natalia, K. | |
dc.contributor.author | Mikhail, K. | |
dc.contributor.author | Georgii, B. | |
dc.contributor.author | Куприяшин, Михаил Андреевич | |
dc.contributor.author | Борзунов, Георгий Иванович | |
dc.date.accessioned | 2024-11-20T10:35:10Z | |
dc.date.available | 2024-11-20T10:35:10Z | |
dc.date.issued | 2019 | |
dc.description.abstract | © 2019 IEEE In previous papers, we composed an algorithmic foundation for computational platform benchmarking of well-known exact algorithms for the Knapsack Problem. We suggested using the run time of these algorithms with fixed inputs as the performance estimates. We then derived a single performance estimate, equally impacted by each of the algorithms. Although this approach makes for a reasonable general-purpose benchmark, equalizing the impact of different algorithms is not completely legitimate, as they have different processing requirements. In this paper, we perform an in-depth analysis of algorithm operational requirements and try to fine-tune the integral estimates to describe special-purpose (e.g. data compression or encipherment/decipherment) platforms more accurately. | |
dc.format.extent | С. 1816-1820 | |
dc.identifier.citation | Natalia, K. Using statistical analysis to fine-tune the results of knapsack-based computational platform benchmarking / Natalia, K., Mikhail, K., Georgii, B. // Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2019. - 2019. - P. 1816-1820. - 10.1109/EIConRus.2019.8657218 | |
dc.identifier.doi | 10.1109/EIConRus.2019.8657218 | |
dc.identifier.uri | https://www.doi.org/10.1109/EIConRus.2019.8657218 | |
dc.identifier.uri | https://www.scopus.com/record/display.uri?eid=2-s2.0-85063468760&origin=resultslist | |
dc.identifier.uri | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000469452600423 | |
dc.identifier.uri | https://openrepository.mephi.ru/handle/123456789/16753 | |
dc.relation.ispartof | Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2019 | |
dc.title | Using statistical analysis to fine-tune the results of knapsack-based computational platform benchmarking | |
dc.type | Conference Paper | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | d121410c-d598-45ff-aa9f-b1be65adf4c5 | |
relation.isAuthorOfPublication | 8c9c0f28-77ec-4d14-9c70-e751d6c044c6 | |
relation.isAuthorOfPublication.latestForDiscovery | d121410c-d598-45ff-aa9f-b1be65adf4c5 | |
relation.isOrgUnitOfPublication | 010157d0-1f75-46b2-ab5b-712e3424b4f5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 010157d0-1f75-46b2-ab5b-712e3424b4f5 |