Publication: Variation in the structure of the amorphous NiTi-based alloys during mechanical vibrations
Дата
2020
Авторы
Journal Title
Journal ISSN
Volume Title
Издатель
Аннотация
© 2020 Elsevier B.V.The aim of the present work is to study the influence of the vibration temperature, frequency and amplitude on the structure of amorphous NiTi-based shape memory alloys. The Ti40.7Hf9.5Ni44.8Cu5, Ti40.7Hf9.5Ni41.8Cu8 and Ti50Ni25Cu25 melt-spun amorphous thin ribbons were subjected to low-frequency mechanical vibrations in a Dynamical Mechanical Analyser or ultrasonic vibrations in anvil. The results of the study have shown that the mechanical vibrations lead to a structural relaxation and initiate the beginning stage of the crystallisation in the amorphous NiTi-based shape memory alloys. During the vibrations with an amplitude of 4 μm, crystalline clusters, with a size of 4–6 nm, appear in the amorphous matrix. On an increase in the vibration temperature or frequency, the size of the crystalline clusters hardly changes. The clusters that form during the vibrations do not influence the crystallisation temperature but decrease the crystallisation enthalpy.
Описание
Ключевые слова
Цитирование
Variation in the structure of the amorphous NiTi-based alloys during mechanical vibrations / Belyaev, S. [et al.] // Journal of Non-Crystalline Solids. - 2020. - 542. - 10.1016/j.jnoncrysol.2020.120101
URI
https://www.doi.org/10.1016/j.jnoncrysol.2020.120101
https://www.scopus.com/record/display.uri?eid=2-s2.0-85084602980&origin=resultslist
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000543017700003
https://openrepository.mephi.ru/handle/123456789/21680
https://www.scopus.com/record/display.uri?eid=2-s2.0-85084602980&origin=resultslist
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000543017700003
https://openrepository.mephi.ru/handle/123456789/21680