Publication:
Painleve analysis and traveling wave solutions of the fourth-order differential equation for pulse with non-local nonlinearity

dc.contributor.authorKudryashov, N. A.
dc.contributor.authorSafonova, D. V.
dc.contributor.authorКудряшов, Николай Алексеевич
dc.contributor.authorСафонова, Дарья Владимировна
dc.date.accessioned2024-11-29T10:34:59Z
dc.date.available2024-11-29T10:34:59Z
dc.date.issued2021
dc.description.abstract© 2020 Elsevier GmbHNonlinear fourth-order partial differential equation with non-local nonlinearity for describing pulses in optical fiber is considered. The traveling wave reductions to the equation are used to obtain the real and imaginary parts of nonlinear differential equation. Using the Painlevé analysis to the system of equations it is shown that this system does not have the general solution with four arbitrary constants. However the equation can have exact solution with the smaller number of arbitrary constants. Conditions for some parameters of the mathematical model are found for solution of the system of equations. Exact solutions for the system of equations are found by the means of the simplest equation method. Exact solutions are given using the Jacobi elliptic functions.
dc.identifier.citationKudryashov, N. A. Painleve analysis and traveling wave solutions of the fourth-order differential equation for pulse with non-local nonlinearity / Kudryashov, N.A., Safonova, D.V. // Optik. - 2021. - 227. - 10.1016/j.ijleo.2020.166019
dc.identifier.doi10.1016/j.ijleo.2020.166019
dc.identifier.urihttps://www.doi.org/10.1016/j.ijleo.2020.166019
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85097338304&origin=resultslist
dc.identifier.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000651298800007
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/23485
dc.relation.ispartofOptik
dc.titlePainleve analysis and traveling wave solutions of the fourth-order differential equation for pulse with non-local nonlinearity
dc.typeArticle
dspace.entity.typePublication
oaire.citation.volume227
relation.isAuthorOfPublicationffa3e9b3-afd3-483c-a8cf-dd71c76020c4
relation.isAuthorOfPublication6cda402b-770f-4c0e-b837-0ddfa66aaa5b
relation.isAuthorOfPublication.latestForDiscoveryffa3e9b3-afd3-483c-a8cf-dd71c76020c4
relation.isOrgUnitOfPublicationdcdb137c-0528-46a5-841b-780227a67cce
relation.isOrgUnitOfPublication.latestForDiscoverydcdb137c-0528-46a5-841b-780227a67cce
Файлы
Коллекции