Publication:
Restricted Boltzmann machine based on a Fermi sea

Дата
2021
Авторы
Lyakhova, Y. S.
Polyakov, E. A.
Rubtsov, A. N.
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт лазерных и плазменных технологий
Стратегическая цель Института ЛаПлаз – стать ведущей научной школой и ядром развития инноваций по лазерным, плазменным, радиационным и ускорительным технологиям, с уникальными образовательными программами, востребованными на российском и мировом рынке образовательных услуг.
Выпуск журнала
Аннотация
In recent years, there has been an intensive research on how to exploit the quantum laws of nature in the machine learning. Models have been put forward which employ spins, photons, and cold atoms. In this work we study the possibility of using the lattice fermions to learn the classical data. We propose an alternative to the quantum Boltzmann machine, the so-called spin-fermion machine (SFM), in which the spins represent the degrees of freedom of the observable data (to be learned), and the fermions represent the correlations between the data. The coupling is linear in spins and quadratic in fermions. The fermions are allowed to tunnel between the lattice sites. The training of SFM can be efficiently implemented since there are closed expressions for the log-likelihood gradient. We find that SFM is more powerful than the classical restricted Boltzmann machine with the same number of physical degrees of freedom. The reason is that SFM has additional freedom due to the rotation of the Fermi sea. We show examples for several data sets.
Описание
Ключевые слова
Цитирование
Restricted Boltzmann machine based on a Fermi sea / Lyakhova, YS, Polyakov, EA, Rubtsov, AN // Journal of Physics A: Mathematical and Theoretical. - 2021. - 54. - № 48. - 10.1088/1751-8121/ac331d
Коллекции