Publication:
Finite Difference Schemes on Locally Refined Cartesian Grids for the Solution of Gas Dynamic Problems on the Basis of Quasigasdynamics Equations

Дата
2019
Авторы
Karamzin, Y. N.
Kudryashova, T. A.
Podryga, V. O.
Polyakov, S. V.
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Выпуск журнала
Аннотация
© 2019, Springer Nature Switzerland AG.The paper is devoted to the numerical solution of gas dynamic problems on the basis of a system of quasigasdynamic equations in domains of complex shape. One possible grid approach to solving this class of problems is used. An approach is applying to the locally refined Cartesian (LRC) grids, consisting of rectangles (parallelepipeds) of various sizes. In this paper some variants of the construction of finite difference schemes in the two-dimensional case are considered. Their order of approximation is investigated. The analysis of the schemes is carried out numerically on the example of two-dimensional problem of gas flow under conditions of the real equation of state.
Описание
Ключевые слова
Цитирование
Finite Difference Schemes on Locally Refined Cartesian Grids for the Solution of Gas Dynamic Problems on the Basis of Quasigasdynamics Equations / Karamzin, Y.N. [et al.] // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). - 2019. - 11386 LNCS. - P. 321-328. - 10.1007/978-3-030-11539-5_36
Коллекции