Publication:
Probing of Neural Networks as a Bridge from Ab Initio Relevant Characteristics to Differential Scanning Calorimetry Measurements of High-Energy Compounds

dc.contributor.authorBondarev, N. V.
dc.contributor.authorKochaev, A. I.
dc.contributor.authorKaya, S.
dc.contributor.authorKatin, K. P.
dc.contributor.authorMerinov, V. B.
dc.contributor.authorMaslov, M. M.
dc.contributor.authorКатин, Константин Петрович
dc.contributor.authorМеринов, Валерий Борисович
dc.contributor.authorМаслов, Михаил Михайлович
dc.date.accessioned2024-12-26T06:54:34Z
dc.date.available2024-12-26T06:54:34Z
dc.date.issued2022
dc.description.abstract© 2021 Wiley-VCH GmbHThe relationships between the theoretical values calculated using density functional theory and experimental data derived from the differential scanning calorimetry of high-energy organic compounds are studied. The theoretical values are the number of atoms and bonds of different types and their lengths, minimum eigenfrequencies, atomization energies, ionization potentials, electron affinities, and frontier orbital energies. The experimental data are the amounts of releasing heat (the first peaks higher than 1 kJ g−1) and corresponding temperatures. Neural networks and regression, factor, discriminant, and cluster analysis are applied to find the dependencies between theoretical values and experimental data. It is found that the heat amount cannot be predicted in the general cases, whereas the corresponding temperature can be predicted with a neural network with an accuracy of ≈30 °C. Cluster and discriminant analysis provides the way for the classification of high-energy compounds into three groups. Some of these groups require particular rules for the prediction of experimental data from the theoretical values.
dc.identifier.citationProbing of Neural Networks as a Bridge from Ab Initio Relevant Characteristics to Differential Scanning Calorimetry Measurements of High-Energy Compounds / Bondarev, N.V. [et al.] // Physica Status Solidi - Rapid Research Letters. - 2022. - 10.1002/pssr.202100191
dc.identifier.doi10.1002/pssr.202100191
dc.identifier.urihttps://www.doi.org/10.1002/pssr.202100191
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85109258558&origin=resultslist
dc.identifier.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000668861300001
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/28564
dc.relation.ispartofPhysica Status Solidi - Rapid Research Letters
dc.titleProbing of Neural Networks as a Bridge from Ab Initio Relevant Characteristics to Differential Scanning Calorimetry Measurements of High-Energy Compounds
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication04d8b4a2-cd20-4cb6-87ed-17a7a821d126
relation.isAuthorOfPublication6261ce30-6af7-4f8d-9089-33809543e9d2
relation.isAuthorOfPublicationc111d069-7969-45a7-9a3e-e187a7a11bf1
relation.isAuthorOfPublication.latestForDiscovery04d8b4a2-cd20-4cb6-87ed-17a7a821d126
relation.isOrgUnitOfPublication06e1796d-4f55-4057-8d7e-bb2f3b5676f5
relation.isOrgUnitOfPublication.latestForDiscovery06e1796d-4f55-4057-8d7e-bb2f3b5676f5
Файлы
Коллекции