Publication:
Vibrational Analysis of Silicon Nanoparticles Using Simulation and Decomposition of Raman Spectra

dc.contributor.authorPovarnitsyn, M. E.
dc.contributor.authorShcheblanov, N. S.
dc.contributor.authorIvanov, D. S.
dc.contributor.authorTimoshenko, V. Y.
dc.contributor.authorKlimentov, S. M.
dc.contributor.authorТимошенко, Виктор Юрьевич
dc.contributor.authorКлиментов, Сергей Михайлович
dc.date.accessioned2024-11-27T07:14:33Z
dc.date.available2024-11-27T07:14:33Z
dc.date.issued2020
dc.description.abstractWe report a classical molecular-dynamics simulation of models of silicon nanoparticles and bulk sili-con, in both the crystalline and the amorphous phase, to investigate their vibrational properties. By using a dynamical-matrix approach and a bond-polarizability model, together with a Raman-decomposition approach [Phys. Rev. B 100, 134309 (2019)], we present a comprehensive analysis of the vibrational spec-tra. In particular, the dependence of the high-frequency range of the Raman spectra on the nanoparticle size is studied. The results are in good agreement with Raman measurements on crystalline nanoparticles and explain the role of the nanoparticle surface, which is responsible for a shift in the Raman spectrum dependent on the particle size. In the low-frequency range, our Raman calculations reproduce well the Lamb-mode signatures, which obey the selection rules deduced by Duval [Phys. Rev. B 46, 5795 (1992)]. As a result of systematic Raman modeling, we confirm the scaling of the main signatures (ascribed to the Lamb modes with l = 0, 2) with respect to the nanoparticle size. By using the Raman-decomposition approach, we demonstrate that only a thin surface layer several angstroms in thickness contributes to the low-frequency Raman signature regardless of the nanoparticle size in the case of both the amorphous and the crystalline phase. Finally, we study the role of the coordination number of the atoms in the surface layer of a nanoparticle in order to explain the difference between the crystalline and amorphous vibrational spectra. The approach developed provides knowledge necessary for the correct interpretation of Raman spectra of nanoparticles, which opens up the possibility of quantitative control of surface-induced effects that may be relevant to various applications.
dc.identifier.citationVibrational Analysis of Silicon Nanoparticles Using Simulation and Decomposition of Raman Spectra / Povarnitsyn, ME [et al.] // Physical Review Applied. - 2020. - 14. - № 1. - 10.1103/PhysRevApplied.14.014067
dc.identifier.doi10.1103/PhysRevApplied.14.014067
dc.identifier.urihttps://www.doi.org/10.1103/PhysRevApplied.14.014067
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85089519921&origin=resultslist
dc.identifier.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000552271600002
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/22207
dc.relation.ispartofPhysical Review Applied
dc.titleVibrational Analysis of Silicon Nanoparticles Using Simulation and Decomposition of Raman Spectra
dc.typeArticle
dspace.entity.typePublication
oaire.citation.issue1
oaire.citation.volume14
relation.isAuthorOfPublication4cf6bcf1-0992-45ed-af93-68678d96a4da
relation.isAuthorOfPublication08d6d476-247c-4c17-958a-8c1173dd1f60
relation.isAuthorOfPublication.latestForDiscovery4cf6bcf1-0992-45ed-af93-68678d96a4da
relation.isOrgUnitOfPublicationc8407a6f-7272-450d-8d99-032352c76b55
relation.isOrgUnitOfPublication.latestForDiscoveryc8407a6f-7272-450d-8d99-032352c76b55
Файлы
Коллекции