Publication:
Computational techniques for the analysis of small signals in high-statistics neutrino oscillation experiments

Дата
2020
Авторы
Aartsen, M. G.
Ackermann, M.
Adams, J.
Aguilar, J. A.
Besson, D. Z.
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Выпуск журнала
Аннотация
The current and upcoming generation of Very Large Volume Neutrino Telescopes - collecting unprecedented quantities of neutrino events - can be used to explore subtle effects in oscillation physics, such as (but not restricted to) the neutrino mass ordering. The sensitivity of an experiment to these effects can be estimated from Monte Carlo simulations. With the high number of events that will be collected, there is a trade-off between the computational expense of running such simulations and the inherent statistical uncertainty in the determined values. In such a scenario, it becomes impractical to produce and use adequately-sized sets of simulated events with traditional methods, such as Monte Carlo weighting. In this work we present a staged approach to the generation of expected distributions of observables in order to overcome these challenges. By combining multiple integration and smoothing techniques which address limited statistics from simulation it arrives at reliable analysis results using modest computational resources.
Описание
Ключевые слова
Цитирование
Computational techniques for the analysis of small signals in high-statistics neutrino oscillation experiments / Aartsen, MG [et al.] // Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - 2020. - 977. - 10.1016/j.nima.2020.164332
Коллекции