Publication:
Virtual analog of uranium-water subcritical assembly

dc.contributor.authorKiryukhin, P. K.
dc.contributor.authorRomanenko, V. I.
dc.contributor.authorKhomyakov, D. A.
dc.contributor.authorShcherbakov, A. A.
dc.contributor.authorPugachev, P. A.
dc.contributor.authorYushin, I. M.
dc.contributor.authorAshraf, O.
dc.contributor.authorTikhomirov, G. V.
dc.contributor.authorКирюхин, Павел Константинович
dc.contributor.authorРоманенко, Владислав Игоревич
dc.contributor.authorХомяков, Дмитрий Андреевич
dc.contributor.authorЩербаков, Александр Антонович
dc.contributor.authorПугачев, Павел Александрович
dc.contributor.authorТихомиров, Георгий Валентинович
dc.date.accessioned2024-12-26T09:35:54Z
dc.date.available2024-12-26T09:35:54Z
dc.date.issued2022
dc.description.abstract© 2022 Elsevier LtdVirtual reality (VR) technology is now being adopted in many industries, including entertainment, medicine, science, and engineering. In the nuclear field, the primary purposes of VR are: reducing radiation dose rates, security of nuclear facilities, visualization of physical processes, and training of personnel. Additionally, VR is a much cheaper alternative to expensive and license-requiring experimental nuclear facilities. This work focuses on reconstructing the workroom with the Uranium-Water Subcritical Assembly (UWSA) located at the National Research Nuclear University MEPhI to determine the optimal uranium–water ratio associated with this assembly in virtual reality. The creation of the virtual analog using Unreal Engine 4 was introduced to integrate the physical model into the virtual environment. The neutronic model of the UWSA was obtained by the MCU code. A similar model was generated by the Serpent code for verification purposes. Additional functions such as neutron flux visualization, radiation dose rate distribution visualization, and dose accumulation mechanics were introduced into the project to improve the quality of education. Visualization of both neutron flux in the assembly and gamma radiation distribution in the workroom was performed using particle systems and volumetric fog based on calculated and experimental data. Operating experience feedback was introduced to prevent or minimize difficulties that may occur in the future by learning from events that have already occurred.
dc.identifier.citationVirtual analog of uranium-water subcritical assembly / Kiryukhin, P.K. [et al.] // Annals of Nuclear Energy. - 2022. - 172. - 10.1016/j.anucene.2022.109058
dc.identifier.doi10.1016/j.anucene.2022.109058
dc.identifier.urihttps://www.doi.org/10.1016/j.anucene.2022.109058
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85126566955&origin=resultslist
dc.identifier.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000806174600002
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/28847
dc.relation.ispartofAnnals of Nuclear Energy
dc.titleVirtual analog of uranium-water subcritical assembly
dc.typeArticle
dspace.entity.typePublication
oaire.citation.volume172
relation.isAuthorOfPublication56c7b23d-36b5-4ff1-bb80-bd6cc7588174
relation.isAuthorOfPublication28ad932f-448c-4468-8858-0921adb728f7
relation.isAuthorOfPublication0878067a-e079-456d-bcec-ce3fdbac0a0b
relation.isAuthorOfPublication2f6744c7-8c50-48dd-aba0-0f0f4147eee0
relation.isAuthorOfPublication1d30fd8d-e898-4a4d-b1eb-4eb4a3a1e59d
relation.isAuthorOfPublicationdc9f0632-6775-4c18-9f8e-d295ddf7da46
relation.isAuthorOfPublication.latestForDiscovery56c7b23d-36b5-4ff1-bb80-bd6cc7588174
relation.isOrgUnitOfPublicationba0b4738-e6bd-4285-bda5-16ab2240dbd1
relation.isOrgUnitOfPublication.latestForDiscoveryba0b4738-e6bd-4285-bda5-16ab2240dbd1
Файлы
Коллекции