Publication:
Voice authentication based on the Russian-language dataset, MFCC method and the anomaly detection algorithm

Дата
2020
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт интеллектуальных кибернетических систем
Цель ИИКС и стратегия развития - это подготовка кадров, способных противостоять современным угрозам и вызовам, обладающих знаниями и компетенциями в области кибернетики, информационной и финансовой безопасности для решения задач разработки базового программного обеспечения, повышения защищенности критически важных информационных систем и противодействия отмыванию денег, полученных преступным путем, и финансированию терроризма.
Выпуск журнала
Аннотация
© 2020 Polish Information Processing Society - as it is since 2011.Almost all people's data is stored on their personal devices. There is a need to protect information from unauthorized access. PIN codes, passwords, tokens can be forgotten, lost, transferred, brute-force attacked. For this reason, biometric authentication is gaining in popularity. Biometric data are unchanged for a long time, different for users, and can be measured. This paper explores voice authentication due to the ease of use of this technology, since obtaining voice characteristics of users doesn't require an equipment in addition to the microphone. The method of voice authentication based on an anomaly detection algorithm has been proposed. The software module for text-independent authentication has been implemented on the Python language. It's based on a new Mozilla's open source voice dataset 'Common voice'. Experimental results confirmed the high accuracy of authentication by the proposed method.
Описание
Ключевые слова
Цитирование
Sidorova, A. Voice authentication based on the Russian-language dataset, MFCC method and the anomaly detection algorithm / Sidorova, A., Kogos, K. // Proceedings of the 2020 Federated Conference on Computer Science and Information Systems, FedCSIS 2020. - 2020. - P. 537-540. - 10.15439/2020F43
Коллекции