Publication:
Comparative Analysis of Methods for Calculating the Interactions Between the Human Brain Regions Based on Resting-State FMRI Data to Build Long-Term Cognitive Architectures

Дата
2021
Авторы
Poyda, A.
Sharaev, M.
Orlov, V.
Kozlov, S.
Ushakov, V.
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт интеллектуальных кибернетических систем
Цель ИИКС и стратегия развития - это подготовка кадров, способных противостоять современным угрозам и вызовам, обладающих знаниями и компетенциями в области кибернетики, информационной и финансовой безопасности для решения задач разработки базового программного обеспечения, повышения защищенности критически важных информационных систем и противодействия отмыванию денег, полученных преступным путем, и финансированию терроризма.
Выпуск журнала
Аннотация
© 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.In this work, we compared many different methods proposed for calculating the functional interaction of brain regions based on resting-state fMRI data. We compared them according to the criterion of the stability of the results to small changes in the parameters of both the methods themselves and the input data including different levels of noise. By stability, here we mean that small changes in the parameters and level of noise will lead to small changes in the obtained estimates of the interaction. Since fMRI has a temporal resolution of about 2 s, here we focused on long-term architectures (400 s or more). Our study revealed that measures of Correlation and Coherence families show slightly better values for sustainability. This is in a good agreement with the result obtained earlier on synthetic fMRI data when evaluating medium-strength connections, that may be characteristic of resting-state.
Описание
Ключевые слова
Цитирование
Comparative Analysis of Methods for Calculating the Interactions Between the Human Brain Regions Based on Resting-State FMRI Data to Build Long-Term Cognitive Architectures / Poyda, A. [et al.] // Advances in Intelligent Systems and Computing. - 2021. - 1310. - P. 380-390. - 10.1007/978-3-030-65596-9_46
Коллекции