Publication:
The Transformer Neural Network Architecture for Part-of-Speech Tagging

dc.contributor.authorMaksutov, A. A.
dc.contributor.authorZamyatovskiy, V. I.
dc.contributor.authorMorozov, V. O.
dc.contributor.authorDmitriev, S. O.
dc.contributor.authorМаксутов, Артем Артурович
dc.contributor.authorДмитриев, Святослав Олегович
dc.date.accessioned2024-11-29T15:25:20Z
dc.date.available2024-11-29T15:25:20Z
dc.date.issued2021
dc.description.abstract© 2021 IEEE.Part-of-speech tagging (POS tagging) is one of the most important tasks in natural language processing. This process implies determining part of speech and assigning an appropriate tag for each word in given sentence. The resulting tag sequence can be used as is and as a part of more complicated tasks, such as dependency and constituency parsing. This task belongs to sequence-to-sequence tasks and multilayer bidirectional LSTM networks are commonly used for POS tagging. Such networks are rather slow in terms of training and processing large amounts of information due to sequential computation of each timestamp from the input sequence. This paper is focused on developing an accurate model for POS tagging that uses the original Transformer neural network architecture.
dc.format.extentС. 536-540
dc.identifier.citationThe Transformer Neural Network Architecture for Part-of-Speech Tagging / Maksutov, A.A. [et al.] // Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021. - 2021. - P. 536-540. - 10.1109/ElConRus51938.2021.9396231
dc.identifier.doi10.1109/ElConRus51938.2021.9396231
dc.identifier.urihttps://www.doi.org/10.1109/ElConRus51938.2021.9396231
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85104760695&origin=resultslist
dc.identifier.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000669709800118
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/23995
dc.relation.ispartofProceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021
dc.titleThe Transformer Neural Network Architecture for Part-of-Speech Tagging
dc.typeConference Paper
dspace.entity.typePublication
relation.isAuthorOfPublication784e21ea-81ec-4fda-aa8b-7cc16f41e3c9
relation.isAuthorOfPublication2d6ffb28-56fa-4f38-a859-3bb1e5585bfa
relation.isAuthorOfPublication.latestForDiscovery784e21ea-81ec-4fda-aa8b-7cc16f41e3c9
relation.isOrgUnitOfPublication010157d0-1f75-46b2-ab5b-712e3424b4f5
relation.isOrgUnitOfPublication.latestForDiscovery010157d0-1f75-46b2-ab5b-712e3424b4f5
Файлы
Коллекции