Publication:
Determination of Fruit Quality by Image Using Deep Neural Network

dc.contributor.authorSnatkina, O. A.
dc.contributor.authorKugushev, A. R.
dc.date.accessioned2024-12-25T13:48:07Z
dc.date.available2024-12-25T13:48:07Z
dc.date.issued2022
dc.description.abstract© 2022 IEEE.This paper proposes an approach to recognizing and determining the freshness of fruits based on the YOLOv3 neural network, working with both images and videos. 6 classes are used as recognition objects: fresh and spoiled bananas, oranges, and apples. To train the network, its own marked-up dataset is used. A small amount of training data is enough for the network to show good quality metrics and correct work results. The precision of recognition and determination of fruit freshness was 90%, recall 96%.
dc.format.extentС. 1423-1426
dc.identifier.citationSnatkina, O. A. Determination of Fruit Quality by Image Using Deep Neural Network / Snatkina, O.A., Kugushev, A.R. // Proceedings of the 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2022. - 2022. - P. 1423-1426. - 10.1109/ElConRus54750.2022.9755693
dc.identifier.doi10.1109/ElConRus54750.2022.9755693
dc.identifier.urihttps://www.doi.org/10.1109/ElConRus54750.2022.9755693
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85129545136&origin=resultslist
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/27905
dc.relation.ispartofProceedings of the 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2022
dc.titleDetermination of Fruit Quality by Image Using Deep Neural Network
dc.typeConference Paper
dspace.entity.typePublication
relation.isOrgUnitOfPublication010157d0-1f75-46b2-ab5b-712e3424b4f5
relation.isOrgUnitOfPublication.latestForDiscovery010157d0-1f75-46b2-ab5b-712e3424b4f5
Файлы
Коллекции