Publication:
From thin to thick domain walls: An example of the φ 8model

dc.contributor.authorBlinov, P. A.
dc.contributor.authorMarjaneh, A. M.
dc.contributor.authorGani, V. A.
dc.contributor.authorГани, Вахид Абдулович
dc.date.accessioned2024-11-27T15:19:18Z
dc.date.available2024-11-27T15:19:18Z
dc.date.issued2020
dc.description.abstract© Published under licence by IOP Publishing Ltd.We demonstrate that for some certain values of parameters of the (1 + 1)-dimensional φ 8 model, the kink solutions can be found from polynomial equations. For some selected values of the parameters we give the explicit formulas for the kinks in all topological sectors of the model. Based on the obtained algebraic equations, we show that in a special limiting case, kinks with power-law asymptotics arise in the model, describing, in particular, thick domain walls. Objects of this kind could be of interest for modern cosmology.
dc.identifier.citationBlinov, P. A. From thin to thick domain walls: An example of the φ 8model / Blinov, P.A., Marjaneh, A.M., Gani, V.A. // Journal of Physics: Conference Series. - 2020. - 1690. - № 1. - 10.1088/1742-6596/1690/1/012082
dc.identifier.doi10.1088/1742-6596/1690/1/012082
dc.identifier.urihttps://www.doi.org/10.1088/1742-6596/1690/1/012082
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85098320839&origin=resultslist
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/22950
dc.relation.ispartofJournal of Physics: Conference Series
dc.titleFrom thin to thick domain walls: An example of the φ 8model
dc.typeConference Paper
dspace.entity.typePublication
oaire.citation.issue1
oaire.citation.volume1690
relation.isAuthorOfPublication3af66a9a-639f-4843-aa2c-2d3c8219e8bd
relation.isAuthorOfPublication.latestForDiscovery3af66a9a-639f-4843-aa2c-2d3c8219e8bd
relation.isOrgUnitOfPublicationd19559ab-04cd-486a-ae8e-f40ccd36a1a6
relation.isOrgUnitOfPublication.latestForDiscoveryd19559ab-04cd-486a-ae8e-f40ccd36a1a6
Файлы
Original bundle
Теперь показываю 1 - 1 из 1
Загружается...
Уменьшенное изображение
Name:
W3113586544.pdf
Size:
545.16 KB
Format:
Adobe Portable Document Format
Description:
Коллекции