Publication:
Dynamics of a Homogeneous and Isotropic Space in Pure Cubic f(R) Gravity

dc.contributor.authorPetriakova, P.
dc.date.accessioned2024-11-29T17:49:29Z
dc.date.available2024-11-29T17:49:29Z
dc.date.issued2021
dc.description.abstractThe possible ways of dynamics of a homogeneous and isotropic space described by the Friedmann-Lemaitre-Robertson-Walker metric in the framework of cubic in the Ricci scalar f(R) gravity in the absence of matter are considered. This paper points towards an effective method for limiting the parameters of extended gravity models. A method for f(R)-gravity models, based on the metric dynamics of various model parameters in the simplest example is proposed. The influence of the parameters and initial conditions on further dynamics are discussed. The parameters can be limited by (i) slow growth of space, (ii) instability and (iii) divergence with the inflationary scenario.
dc.format.extentС. 379-385
dc.identifier.citationPetriakova, P. Dynamics of a Homogeneous and Isotropic Space in Pure Cubic f(R) Gravity / Petriakova, P // Physics (Switzerland). - 2021. - 3. - № 2. - P. 379-385. - 10.3390/physics3020027
dc.identifier.doi10.3390/physics3020027
dc.identifier.urihttps://www.doi.org/10.3390/physics3020027
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85124985060&origin=resultslist
dc.identifier.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000668504800001
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/24393
dc.relation.ispartofPhysics (Switzerland)
dc.titleDynamics of a Homogeneous and Isotropic Space in Pure Cubic f(R) Gravity
dc.typeArticle
dspace.entity.typePublication
oaire.citation.issue2
oaire.citation.volume3
relation.isOrgUnitOfPublicationba0b4738-e6bd-4285-bda5-16ab2240dbd1
relation.isOrgUnitOfPublication.latestForDiscoveryba0b4738-e6bd-4285-bda5-16ab2240dbd1
Файлы
Original bundle
Теперь показываю 1 - 1 из 1
Загружается...
Уменьшенное изображение
Name:
W3165277242.pdf
Size:
528 KB
Format:
Adobe Portable Document Format
Description:
Коллекции