Publication:
An exact solution to the Lame problem for a hollow sphere for new types of nonlinear elastic materials in the case of large deformations

Дата
2021
Авторы
Levin, V. A.
Podladchikov, Y. Y.
Zingerman, K. M.
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Выпуск журнала
Аннотация
© 2021Constitutive relations of two classes are proposed for nonlinear elastic isotropic materials, which, in case of purely volumetric deformation, are reduced to the Murnaghan's equation of state. Exact analytical solution of the Lame problem of the radially symmetric deformation of a hollow sphere is obtained for one of these material classes. Nonlinear effects are studied. The non-uniqueness of solution is obtained for the case in which the sphere radii are specified in the initial configuration. It is shown for this case that there is a limiting pressure, above which the problem has no solution. The strong ellipticity conditions are tested. The obtained results can be used in geomechanics for modeling the recrystallization of metamorphic rocks.
Описание
Ключевые слова
Цитирование
Levin, V. A. An exact solution to the Lame problem for a hollow sphere for new types of nonlinear elastic materials in the case of large deformations / Levin, V.A., Podladchikov, Y.Y., Zingerman, K.M. // European Journal of Mechanics, A/Solids. - 2021. - 90. - 10.1016/j.euromechsol.2021.104345
Коллекции