Publication:
Experiments with Neural Net Object Detection System YOLO on Small Training Datasets for Intelligent Robotics

Дата
2020
Авторы
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт интеллектуальных кибернетических систем
Цель ИИКС и стратегия развития - это подготовка кадров, способных противостоять современным угрозам и вызовам, обладающих знаниями и компетенциями в области кибернетики, информационной и финансовой безопасности для решения задач разработки базового программного обеспечения, повышения защищенности критически важных информационных систем и противодействия отмыванию денег, полученных преступным путем, и финансированию терроризма.
Выпуск журнала
Аннотация
© 2020, Springer Nature Switzerland AG.In this paper we’ve conducted multiple experiments with modern object detection system YOLO. Object detection systems are fundamental to many robotics tasks. Recognition algorithms involving object detection are often part of various intelligence systems for robots. Training object detection systems usually requires waste amounts of training data which can be expensive and time-consuming. In this paper we’ve conducted several experiments with YOLO on small training datasets investigating YOLO’s capacity to train on small number of examples. We measured accuracy metrics for object detector depending on the size of training dataset, compared training process of full and smaller versions of YOLO and their speed. Gathered information will be used for creating visual factographic intelligence system for robots. YOLO (You Only Look Once) is a special intelligent technology for computer vision techniques. Our results are useful for industry professionals and students from a broad range of disciplines related to robotics, intelligent technologies and other fields.
Описание
Ключевые слова
Цитирование
Kulik, S. D. Experiments with Neural Net Object Detection System YOLO on Small Training Datasets for Intelligent Robotics / Kulik, S.D., Shtanko, A.N. // Mechanisms and Machine Science. - 2020. - 80. - P. 157-162. - 10.1007/978-3-030-33491-8_19
Коллекции