Publication:
Using Domain Knowledge for Feature Selection in Neural Network Solution of the Inverse Problem of Magnetotelluric Sounding

Дата
2021
Авторы
Isaev, I.
Obornev, E.
Obornev, I.
Rodionov, E.
Shirokiy, V.
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт интеллектуальных кибернетических систем
Цель ИИКС и стратегия развития - это подготовка кадров, способных противостоять современным угрозам и вызовам, обладающих знаниями и компетенциями в области кибернетики, информационной и финансовой безопасности для решения задач разработки базового программного обеспечения, повышения защищенности критически важных информационных систем и противодействия отмыванию денег, полученных преступным путем, и финансированию терроризма.
Выпуск журнала
Аннотация
© 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.In the present study, using the inverse problem (IP) of magnetotelluric sounding (MTS) as an example, we consider the use of neural networks to solve high-dimensional coefficient inverse problems. To reduce the incorrectness, a complex approach is considered related to the use of narrow classes of geological models, with prior selection of the model class by solving the classification problem by MTS data. Within the framework of this approach, the actual direction of work is to reduce the volume of calculations when re-building the system for another set of geological models. This goal can be achieved by selecting the essential features. The present paper is devoted to the study of the applicability of various selection methods to the MTS IP. Also, in this paper we consider taking into account domain knowledge about the studied object in the process of selection of essential features using methods such as wrapper.
Описание
Ключевые слова
Цитирование
Using Domain Knowledge for Feature Selection in Neural Network Solution of the Inverse Problem of Magnetotelluric Sounding / Isaev, I. [et al.] // Advances in Intelligent Systems and Computing. - 2021. - 1310. - P. 115-126. - 10.1007/978-3-030-65596-9_15
Коллекции