Publication:
Chirped super–Gaussian and super–sech pulse perturbation of nonlinear Schrodinger's equation with quadratic–cubic nonlinearity by variational principle

dc.contributor.authorAyela, A. M.
dc.contributor.authorEdah, G.
dc.contributor.authorElloh, C.
dc.contributor.authorEkici, M.
dc.contributor.authorBiswas, A.
dc.date.accessioned2024-11-29T11:45:07Z
dc.date.available2024-11-29T11:45:07Z
dc.date.issued2021
dc.description.abstract© 2021 Elsevier B.V.We apply variational method to the perturbed nonlinear Schrödinger equation having quadratic-cubic form of nonlinearity, to study localized optical pulses. Super-Gaussian and super-sech solitons are used as envelopes for the trial function. Numerical simulations are presented for specific values of the Gaussian and super-sech pulse parameters. The impact of the quadratic-cubic terms on the evolution for different parameters is assessed. In general, when the nonlinear quadratic and cubic coefficients increase, the frequency of the oscillations of the collective variables also increases.
dc.identifier.citationChirped super–Gaussian and super–sech pulse perturbation of nonlinear Schrodinger's equation with quadratic–cubic nonlinearity by variational principle / Ayela, A.M. [et al.] // Physics Letters, Section A: General, Atomic and Solid State Physics. - 2021. - 396. - 10.1016/j.physleta.2021.127231
dc.identifier.doi10.1016/j.physleta.2021.127231
dc.identifier.urihttps://www.doi.org/10.1016/j.physleta.2021.127231
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85101380202&origin=resultslist
dc.identifier.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000632992400004
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/23682
dc.relation.ispartofPhysics Letters, Section A: General, Atomic and Solid State Physics
dc.titleChirped super–Gaussian and super–sech pulse perturbation of nonlinear Schrodinger's equation with quadratic–cubic nonlinearity by variational principle
dc.typeArticle
dspace.entity.typePublication
oaire.citation.volume396
Файлы
Коллекции