Publication:
The mixed interaction of localized, breather, exploding and solitary wave for the (3+1)-dimensional Kadomtsev–Petviashvili equation in fluid dynamics

Дата
2020
Авторы
Yu, W.
Zhang, H.
Zhou, Q.
Alzahrani, A. K.
Biswas, A.
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Выпуск журнала
Аннотация
© 2020, Springer Nature B.V.The (3+1)-dimensional Kadomtsev–Petviashvili (KP) equation with weak nonlinearity, dispersion and perturbation can denote the development of the long waves and the surface waves in fluid dynamics. In this paper, the KP equation is illustrated with the symbolic computation. The mixed interaction solutions of local wave, solitary wave, breather wave, exploding wave and periodic wave for the equation are derived by the Hirota method. The effects of dispersion, nonlinearity and other parameters on the interactions are investigated. The solitary wave can be amplified via introducing the local wave. Adjusting the parameters can make the transmission of localized and breather wave more stable. Moreover, a new exploding and periodic wave is observed. It is useful for enriching the dynamic patterns of the wave solutions.
Описание
Ключевые слова
Цитирование
The mixed interaction of localized, breather, exploding and solitary wave for the (3+1)-dimensional Kadomtsev–Petviashvili equation in fluid dynamics / Yu, W. [et al.] // Nonlinear Dynamics. - 2020. - 10.1007/s11071-020-05598-3
Коллекции