Publication:
Methods and Approaches for Privacy-Preserving Machine Learning

dc.contributor.authorLisin, N.
dc.contributor.authorZapechnikov, S.
dc.contributor.authorЗапечников, Сергей Владимирович
dc.date.accessioned2024-11-25T15:43:49Z
dc.date.available2024-11-25T15:43:49Z
dc.date.issued2020
dc.description.abstract© 2020, Springer Nature Switzerland AG.One of the main problems of machine learning is the need for a large amount of memory and a long learning time. To solve this problem, many companies prefer to store their data and training models on remote servers. However, not all data and models can be stored in the plaintext without any protection. In many areas (for example, banking or medical), the privacy of data and models is very important. To ensure confidentiality, a privacy-preserving machine learning application is a good solution. This article discusses two main approaches to privacy-preserving machine learning (cryptographic and perturbation), describes methods for ensuring privacy, which they include, and provides examples of using of some methods in practice.
dc.format.extentС. 141-148
dc.identifier.citationLisin, N. Methods and Approaches for Privacy-Preserving Machine Learning / Lisin, N., Zapechnikov, S. // Mechanisms and Machine Science. - 2020. - 80. - P. 141-148. - 10.1007/978-3-030-33491-8_17
dc.identifier.doi10.1007/978-3-030-33491-8_17
dc.identifier.urihttps://www.doi.org/10.1007/978-3-030-33491-8_17
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85078197620&origin=resultslist
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/20176
dc.relation.ispartofMechanisms and Machine Science
dc.titleMethods and Approaches for Privacy-Preserving Machine Learning
dc.typeConference Paper
dspace.entity.typePublication
oaire.citation.volume80
relation.isAuthorOfPublicationa5cd9b64-c141-4a13-94a9-c9390fa862ea
relation.isAuthorOfPublication.latestForDiscoverya5cd9b64-c141-4a13-94a9-c9390fa862ea
relation.isOrgUnitOfPublication010157d0-1f75-46b2-ab5b-712e3424b4f5
relation.isOrgUnitOfPublication.latestForDiscovery010157d0-1f75-46b2-ab5b-712e3424b4f5
Файлы
Коллекции