Publication:
Identification of electromagnetic and hadronic EASs using neural network for TAIGA scintillation detector array

dc.contributor.authorАстапов, Иван Иванович
dc.contributor.authorЯшин, Игорь Иванович
dc.contributor.authorКокоулин, Ростислав Павлович
dc.contributor.authorПетрухин, Анатолий Афанасьевич
dc.contributor.authorAstapov, I. I.
dc.contributor.authorKindin, V. V.
dc.contributor.authorKokoulin, R. P.
dc.contributor.authorKompaniets, K. G.
dc.contributor.authorPetrukhin, A. A.
dc.contributor.authorYashin, I. I.
dc.contributor.authorКомпаниец, Константин Георгиевич
dc.contributor.authorКиндин, Виктор Владимирович
dc.date.accessioned2023-09-08T09:06:19Z
dc.date.available2023-09-08T09:06:19Z
dc.date.issued2022
dc.description.abstractThe TAIGA experiment in Tunka valley is expanding the present scintillation detector array with new TAIGA-Muon detector stations. A simulation model was developed for optimization of the layout of the new stations and study of the identification performance of the array. The extensive air showers (EASs) were simulated with the CORSIKA simulation tool, and the detector response was simulated with the GEANT4 package. EASs induced by gamma quanta or protons in the energy range from 1 PeV to 10 PeV and the zenith angle range from 0° to 45°, are used for these studies. For the identification of high energy extensive air showers, a method based on a neural network was suggested. With this method, the proton identification efficiency is more than 90%, while the gamma identification efficiency not less than 50%.
dc.identifier.citationIdentification of electromagnetic and hadronic EASs using neural network for TAIGA scintillation detector array / Bezyazeekov,P. [at al.] // Journal of Instrumentation. - 2022. - 17.- 10.1088/1748-0221/17/05/p05023
dc.identifier.doi10.1088/1748-0221/17/05/p05023
dc.identifier.issn1748-0221
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/198
dc.identifier.urihttps://iopscience.iop.org/article/10.1088/1748-0221/17/05/P05023
dc.relation.ispartofJournal of Instrumentation
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleIdentification of electromagnetic and hadronic EASs using neural network for TAIGA scintillation detector array
dc.typejournal-article
dspace.entity.typePublication
oaire.citation.issue05
oaire.citation.volume17
relation.isAuthorOfPublication16427eed-8865-41a1-8564-dba759ae3e80
relation.isAuthorOfPublication652c088e-0946-4060-9656-07ded31abffa
relation.isAuthorOfPublication956e278c-3279-4e2b-9eb0-1081e4192b04
relation.isAuthorOfPublication00d234e7-415c-42f4-bacb-9a764a8ef989
relation.isAuthorOfPublicationd4dc6335-bed6-47f8-a295-0707f639e951
relation.isAuthorOfPublication79799ca3-ad7e-4b44-92b5-df644cfe2581
relation.isAuthorOfPublication.latestForDiscovery16427eed-8865-41a1-8564-dba759ae3e80
relation.isProjectOfPublicationd70dec91-58fe-4426-969e-4d66d0ea2d00
relation.isProjectOfPublication.latestForDiscoveryd70dec91-58fe-4426-969e-4d66d0ea2d00
Файлы
License bundle
Теперь показываю 1 - 1 из 1
Загружается...
Уменьшенное изображение
Name:
license.txt
Size:
3.45 KB
Format:
Item-specific license agreed to upon submission
Description:
Коллекции