Publication:
Boosted decision trees approach to neck alpha events discrimination in DEAP-3600 experiment

Дата
2020
Авторы
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Выпуск журнала
Аннотация
© 2020 IOP Publishing Ltd.Machine learning (ML) has been widely applied in high energy physics to help the physical community in particle classification and data analysis. Here we describe the application of machine learning to solve the problem of classifying background and signal events for the DEAP-3600 dark matter search experiment (SNOLAB, Canada). We apply Boosted Decision Trees (BDT) algorithm of ML with improvements from Extra Trees and eXtra Gradient Boosting (XGBoost) methods [1, 2].
Описание
Ключевые слова
Цитирование
Grobov, A. Boosted decision trees approach to neck alpha events discrimination in DEAP-3600 experiment / Grobov, A., Ilyasov, A. // Physica Scripta. - 2020. - 95. - № 7. - 10.1088/1402-4896/ab8dff
Коллекции