Publication: Possibility of using machine learning methods to reconstruct solid body parameters during laser-induced desorption analysis
dc.contributor.author | Stepanenko, A. A. | |
dc.contributor.author | Kashin, D. A. | |
dc.contributor.author | Gasparyan, Y. M. | |
dc.contributor.author | Степаненко, Александр Александрович | |
dc.contributor.author | Гаспарян, Юрий Микаэлович | |
dc.date.accessioned | 2024-12-27T11:12:43Z | |
dc.date.available | 2024-12-27T11:12:43Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Stepanenko, A. A. Possibility of using machine learning methods to reconstruct solid body parameters during laser-induced desorption analysis / Stepanenko, A. A. , Kashin, D. A., Gasparyan, Y. M. // Physica Scripta. - 2023. - 98. - № 11. - 10.1088/1402-4896/ad0186 | |
dc.identifier.doi | 10.1088/1402-4896/ad0186 | |
dc.identifier.uri | https://www.doi.org/10.1088/1402-4896/ad0186 | |
dc.identifier.uri | https://www.scopus.com/record/display.uri?eid=2-s2.0-85176234906&origin=resultslist | |
dc.identifier.uri | https://openrepository.mephi.ru/handle/123456789/29408 | |
dc.relation.ispartof | Physica Scripta | |
dc.subject | Interpolation (computer graphics) | |
dc.subject | Material Analysis | |
dc.subject | Secondary Ion Mass Spectrometry | |
dc.subject | Surface Analysis | |
dc.subject | Sample (material) | |
dc.title | Possibility of using machine learning methods to reconstruct solid body parameters during laser-induced desorption analysis | |
dc.type | Article | |
dspace.entity.type | Publication | |
oaire.citation.issue | 11 | |
oaire.citation.volume | 98 | |
relation.isAuthorOfPublication | 996bdcce-fc04-499e-bcc9-5f4c237fc455 | |
relation.isAuthorOfPublication | 7c09c13b-5454-4e2d-960e-7785484ee06a | |
relation.isAuthorOfPublication.latestForDiscovery | 996bdcce-fc04-499e-bcc9-5f4c237fc455 | |
relation.isOrgUnitOfPublication | dcdb137c-0528-46a5-841b-780227a67cce | |
relation.isOrgUnitOfPublication | 010157d0-1f75-46b2-ab5b-712e3424b4f5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | dcdb137c-0528-46a5-841b-780227a67cce |