Publication:
Ring artifacts segmentation on microtomographic images by convolutional neural networks

Дата
2020
Авторы
Safonov, I.
Yakimchuk, I.
Kornilov, A.
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт общей профессиональной подготовки (ИОПП)
Миссией Института является: фундаментальная базовая подготовка студентов, необходимая для получения качественного образования на уровне требований международных стандартов; удовлетворение потребностей обучающихся в интеллектуальном, культурном, нравственном развитии и приобретении ими профессиональных знаний; формирование у студентов мотивации и умения учиться; профессиональная ориентация школьников и студентов в избранной области знаний, формирование способностей и навыков профессионального самоопределения и профессионального саморазвития. Основными целями и задачами Института являются: обеспечение высококачественной (фундаментальной) базовой подготовки студентов бакалавриата и специалитета; поддержка и развитие у студентов стремления к осознанному продолжению обучения в институтах (САЕ и др.) и на факультетах Университета; обеспечение преемственности образовательных программ общего среднего и высшего образования; обеспечение высокого качества довузовской подготовки учащихся Предуниверситария и школ-партнеров НИЯУ МИФИ за счет интеграции основного и дополнительного образования; учебно-методическое руководство общеобразовательными кафедрами Института, осуществляющими подготовку бакалавров и специалистов по социо-гуманитарным, общепрофессиональным и естественнонаучным дисциплинам, обеспечение единства требований к базовой подготовке студентов в рамках крупных научно-образовательных направлений (областей знаний).
Выпуск журнала
Аннотация
© 2020 IEEE.Ring artifacts in X-ray microtomographic images can lead to errors in the construction of digital twins of rock samples for flow simulation. Previously, we considered an algorithm for detecting ring artifacts by means of matching filtering of image slices in a polar coordinate system. However, that approach is inapplicable for an arbitrary fragment of an image and requires adjustment of parameters from image to image. In this paper, we propose the segmentation method based on convolutional neural network. Two network architectures are considered: SegNet and U-net. To create a big and representative training and validation datasets, we propose an algorithm for transferring ring artifacts detected by the existing approach from one image to another. Our task-specific data augmentation improves outcomes in comparison with conventional augmentation techniques. The trained model successfully segments ring artifacts even for sample images and artifacts that were not in the training set. The developed algorithm is used to assess the quality of microtomographic images and local correction of image regions damaged by ring artifacts.
Описание
Ключевые слова
Цитирование
Safonov, I. Ring artifacts segmentation on microtomographic images by convolutional neural networks / Safonov, I., Yakimchuk, I., Kornilov, A. // Proceedings of ITNT 2020 - 6th IEEE International Conference on Information Technology and Nanotechnology. - 2020. - 10.1109/ITNT49337.2020.9253308
Коллекции