Publication:
Highly Dispersive Optical Soliton Perturbation, with Maximum Intensity, for the Complex Ginzburg-Landau Equation by Semi-Inverse Variation

Дата
2022
Авторы
Biswas, A.
Berkemeyer, T.
Khan, S.
Moraru, L.
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Выпуск журнала
Аннотация
This work analytically recovers the highly dispersive bright 1-soliton solution using for the perturbed complex Ginzburg-Landau equation, which is studied with three forms of nonlinear refractive index structures. They are Kerr law, parabolic law, and polynomial law. The perturbation terms appear with maximum allowable intensity, also known as full nonlinearity. The semi-inverse variational principle makes this retrieval possible. The amplitude-width relation is obtained by solving a cubic polynomial equation using Cardano's approach. The parameter constraints for the existence of such solitons are also enumerated.
Описание
Ключевые слова
Цитирование
Highly Dispersive Optical Soliton Perturbation, with Maximum Intensity, for the Complex Ginzburg-Landau Equation by Semi-Inverse Variation / Biswas, A [et al.] // Mathematics. - 2022. - 10. - № 6. - 10.3390/math10060987
Коллекции