Publication:
Neural network analysis of S-star dynamics: implications for modified gravity

Дата
2023
Авторы
Galikyan, N.
Khlghatyan, S. h.
Kocharyan, A. A.
Gurzadyan, V. G.
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Выпуск журнала
Аннотация
We studied the dynamics of S-stars in the Galactic center using the physics-informed neural networks. The neural networks are considered for both, Keplerian and the General Relativity dynamics, the orbital parameters for stars S1, S2, S9, S13, S31, and S54 are obtained, and the regression problem is solved. It is shown that the neural network is able to detect the Schwarzschild precession for S2 star, while the regressed part revealed an additional precession. Attributing the latter to a possible contribution of a modified gravity, we obtain a constraint for the weak-field modified General Relativity involving the cosmological constant which also deals with the Hubble tension. Our analysis shows the efficiency of neural networks in revealing the S-star dynamics and the prospects upon the increase in the amount and the accuracy of the observational data.
Описание
Ключевые слова
Precession , General Relativity Tests
Цитирование
Neural network analysis of S-star dynamics: implications for modified gravity / Galikyan, N. [et al.] // European Physical Journal Plus. - 2023. - 138. - № 10. - 10.1140/epjp/s13360-023-04528-7
Коллекции