Publication:
Mathematical model of chemical process prediction for industrial safety risk assessment

dc.contributor.authorBogdanova, L. M.
dc.contributor.authorNagibin, S. Y.
dc.contributor.authorLoskutov, D. I.
dc.contributor.authorChemakin, A. S.
dc.contributor.authorArtamonov, A. A.
dc.contributor.authorАртамонов, Алексей Анатольевич
dc.date.accessioned2024-11-29T19:12:04Z
dc.date.available2024-11-29T19:12:04Z
dc.date.issued2021
dc.description.abstract© 2020 Elsevier B.V.. All rights reserved.The article presents a mathematical model of the functioning of the technological process of styrene production using neural network technologies. The use of a direct propagation neural network with a single hidden layer trained on an experimental sample is considered. An algorithm for forming a neural network is proposed. The model is implemented as a software module. The results of predicting the process of chemical production of styrene based on real data and recommendations for using the developed model in the process of assessing the industrial safety of particularly dangerous production processes are presented.
dc.format.extentС. 107-114
dc.identifier.citationMathematical model of chemical process prediction for industrial safety risk assessment / Bogdanova, L.M. [et al.] // Procedia Computer Science. - 2021. - 190. - P. 107-114. - 10.1016/j.procs.2021.06.013
dc.identifier.doi10.1016/j.procs.2021.06.013
dc.identifier.urihttps://www.doi.org/10.1016/j.procs.2021.06.013
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85112600838&origin=resultslist
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/24556
dc.relation.ispartofProcedia Computer Science
dc.titleMathematical model of chemical process prediction for industrial safety risk assessment
dc.typeConference Paper
dspace.entity.typePublication
oaire.citation.volume190
relation.isAuthorOfPublication7e42799b-c550-41b5-a4a9-2cc54f74516c
relation.isAuthorOfPublication.latestForDiscovery7e42799b-c550-41b5-a4a9-2cc54f74516c
relation.isOrgUnitOfPublicationf5e5f016-32cf-42e0-98f7-5b4f96b1ea0c
relation.isOrgUnitOfPublication.latestForDiscoveryf5e5f016-32cf-42e0-98f7-5b4f96b1ea0c
Файлы
Original bundle
Теперь показываю 1 - 1 из 1
Загружается...
Уменьшенное изображение
Name:
W3184458371.pdf
Size:
1.41 MB
Format:
Adobe Portable Document Format
Description:
Коллекции