Publication:
Justification of vver-1000 safety when using fuel compositions doped by protactinium and neptunium

Дата
2020
Авторы
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Выпуск журнала
Аннотация
© 2020 Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University 'MEPhI'. All rights reserved.Increasing fuel burn-up is one of the important areas of nuclear power development. The currently most common type of reactots (light-water reactors) is characterized by burn-up at the level of 5% of heavy metal, which means that only a small fraction of fuel is used to generate electricity. This paper demonstrates the possibility of a significant increase in fuel burn-up due to the introduction of protactinium and neptunium into fuel composition. The chains of nuclide transformations starting with protactinium and neptunium are characterized by a gradual improvement in the neutron-physical properties, which ensures increased fuel burn-up. In this case, a situation may be observed when neutron-physical properties of the fuel composition improve during the reactor campaign, which indicates that at a certain moment of time the accumulation rate of fissile nuclides exceeds the rate of accumulation of fission products. While protactinium is difficult to access in significant quantities, neptunium is contained in spent nuclear fuel, a significant amount of which is in on-site storage facilities. Therefore, from a practical point of view, the introduction of neptunium into fuel composition looks preferable. Significant quantities of protactinium could be accumulated in a hybrid thermonuclear reactor: high-energy neutrons resulting from a fusion reaction are suitable for threshold (n,2n) and (n,γ) reactions which lead to accumulation of protactinium in the thorium blanket. The novelity of this work is the analysis of the effect of protactinium and neptunium on reactivity coefficients during a fuel compaign. The calculations were carried out for a VVER-1000 type reactor using the SCALE-6.2 software package, which is widely used for neutron-physical calculations of nuclear reactors.
Описание
Ключевые слова
Цитирование
Baatar, T. Justification of vver-1000 safety when using fuel compositions doped by protactinium and neptunium / Tuul, B., Gennadievich, K.E. // Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika. - 2020. - 1. - P. 26-36. - 10.26583/npe.2020.1.03
Коллекции