Персона:
Покровский, Сергей Владимирович

Загружается...
Profile Picture
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт лазерных и плазменных технологий
Стратегическая цель Института ЛаПлаз – стать ведущей научной школой и ядром развития инноваций по лазерным, плазменным, радиационным и ускорительным технологиям, с уникальными образовательными программами, востребованными на российском и мировом рынке образовательных услуг.
Статус
Фамилия
Покровский
Имя
Сергей Владимирович
Имя

Результаты поиска

Теперь показываю 1 - 3 из 3
Загружается...
Уменьшенное изображение
Публикация
Открытый доступ

Моделирование распределения токов и энергетических потерь в сверхпроводящем corc-кабеле

2023, Мартиросян, И. В., Михайлова, И. К., Покровский, С. В., Новиков, М. С., Руднев, И. А., Руднев, Игорь Анатольевич, Покровский, Сергей Владимирович, Мартиросян, Ирина Валерьевна, Михайлова, Ирина Константиновна

Представлены результаты численного моделирования характеристик сверхпроводящего CORC-кабеля в условиях циклической синхронной нагрузки электрическим током и магнитным полем при охлаждении жидким неоном. Проведен расчет распределений магнитного поля и токов в системе, механических напряжений и деформаций, энергетических потерь, возникающих при перемагничивании магнитным полем и электрическим током. Показаны особенности электродинамических и теплофизических процессов, происходящих в системе при синхронной токовой и магнитополевой нагрузке при различных углах намотки ВТСП лент. Моделирование выполнено методом конечных элементов в пакете программного обеспечения Comsol Multiphysics. Модель ориентирована на расчет магнитной системы сверхпроводящего индуктивного накопителя энергии в составе коллайдера протонов и тяжелых ионов NICA (Nuclotron based Ion Collider fAcility), строящегося на базе Лаборатории физики высоких энергий (ЛФВЭ) им. В.И. Векслера и А.М. Балдина Объединенного института ядерных исследований (ОИЯИ).

Загружается...
Уменьшенное изображение
Публикация
Открытый доступ

БЕСКОНТАКТНЫЙ СВЕРХПРОВОДЯЩИЙ МАГНИТНЫЙ ПОДШИПНИК

2023, Руднев, И. А., Подливаев, А. И., Абин, Д. А., Покровский, С. В., Осипов, М. А., Стариковский, А. С., Стариковский, Александр Сергеевич, Руднев, Игорь Анатольевич, Абин, Дмитрий Александрович, Покровский, Сергей Владимирович, Подливаев, Алексей Игоревич, Осипов, Максим Андреевич

Изобретение относится к электротехнике, а именно к области бесконтактных магнитных подшипников с использованием высокотемпературных сверхпроводящих (ВТСП) лент второго поколения, и может найти применение при конструировании электротехнических устройств различного назначения с массивным вращающимся ротором/валом при бесконтактной передачи момента вращения неподвижному объекту. Технический результат заключается в обеспечении возможности перемещения положения ротора вдоль статора в процессе работы устройства для бесконтактной передачи момента вращения неподвижному объекту, а также возможности осуществления бесконтактного торможения устройства без его остановки. Бесконтактный сверхпроводящий магнитный подшипник состоит из статора в виде полой трубы, выполненной из немагнитного материала, на внешнюю поверхность которой намотаны сверхпроводящие обмотки, системы охлаждения ВТСП-лент и ротора, выполненного из немагнитного материала, причем оси симметрии ротора и статора совпадают. Ротор и статор размещены в корпусе. На одном из краев статора на его внешней поверхности вокруг трубы расположен первый цилиндрический держатель с осью симметрии, совпадающей со статором, с размещенными в нем вплотную друг к другу одинаковыми постоянными магнитами, образующими ряды вдоль оси симметрии статора, причем количество рядов не менее 4 штук. Магниты в центральных рядах держателя имеют одинаковое направление намагниченности вдоль радиального направления, перпендикулярного оси симметрии, а магниты в крайних рядах имеют направление намагниченности, противоположное центральным магнитам. За держателем расположены две сверхпроводящие обмотки, выполненные из ВТСП-лент второго поколения. Длина каждой обмотки равна расстоянию от держателей магнитов до обмотки и расстоянию между обмотками. Как минимум одна из обмоток имеет правую винтовую симметрию, вторая обмотка - левую винтовую симметрию. Каждая из этих двух обмоток представляет собой двухзаходную спираль, состоящую из двух идущих рядом вплотную друг к другу одинаковых ВТСП-лент второго поколения. За обмотками на внешней поверхности статора на расстоянии, равном расстоянию между обмотками, расположен второй идентичный первому держатель с размещенными в нем постоянными магнитами. Внутри статора расположен цилиндрический ротор в виде стержня, на внешней поверхности которого намотаны 4 сверхпроводящие обмотки. Причем 2 обмотки расположены напротив обмоток статора и полностью идентичны им, а две другие обмотки расположены напротив держателей постоянных магнитов. Каждая из этих обмоток состоит из более чем одной ВТСП-ленты, ширина которой не более, чем ширина одного из постоянных магнитов. На одном из торцов ротора расположен внешний источник вращения. 4 ил.

Загружается...
Уменьшенное изображение
Публикация
Открытый доступ

Магнитная цилиндрическая муфта на основе стопок ВТСП лент для кинетического накопителя энергии

2024, Покровский, С. В., Руднев, И. А., Мартиросян, И. В., Осипова, М. А., Стариковский, А. С., Абин, Д. А., Осипов, Максим Андреевич, Покровский, Сергей Владимирович, Руднев, Игорь Анатольевич, Мартиросян, Ирина Валерьевна, Абин, Дмитрий Александрович, Стариковский, Александр Сергеевич

Изобретение относится к области электротехники, а именно к устройствам бесконтактной передачи крутящего момента. Магнитная цилиндрическая муфта на основе стопок ВТСП лент для кинетического накопителя энергии состоит из двух цилиндрических полумуфт. Ведущая полумуфта содержит постоянные магниты, а ведомая полумуфта размещена в охлаждаемой криорефрижератором вакуумной камере. На внешней поверхности ведущей полумуфты размещены не менее одного ряда постоянных магнитов. На внутренней поверхности ведомой полумуфты напротив каждого постоянного магнита расположены стопки ВТСП лент. Количество стопок совпадает с количеством постоянных магнитов. Вокруг боковой поверхности ведомой цилиндрической полумуфты с зазором установлен полый цилиндрический медный экран, имеющий плотный механический контакт с криорефрижератором. На внешней поверхности цилиндрического медного экрана, на противоположной стороне, обращенной к вышеупомянутой ведомой полумуфте, намотан нагреватель. Достигается увеличении стабильности вращения ведомого вала. 2 ил.