Персона: Петровский, Анатолий Николаевич
Email Address
Birth Date
Научные группы
Организационные подразделения
Статус
Фамилия
Имя
Имя
Результаты поиска
Study of Mechanical Characteristics of Stainless Steel Samples Obtained by Direct Laser Deposition
2019, Ishkinyaev, E. D., Petrovskiy, V. N., Polskiy, V. I., Dzhumaev, P. S., Sergeev, K. L., Shchekin, A. S., Panov, D. V., Ushakov, D. V., Ишкиняев, Эмиль Дамирович, Петровский, Анатолий Николаевич, Польский, Валерий Игоревич, Джумаев, Павел Сергеевич, Щекин, Александр Сергеевич
© 2019, Pleiades Publishing, Ltd.The paper presents the results of mechanical tensile tests and microhardness of samples obtained from stainless steel 316L powder by direct laser deposition. The strength characteristics of the deposited samples are better than those of rolled ones obtained in the traditional way. The material strength is reduced and its plasticity is increased with the growth of the laser radiation power during deposition. The obtained regularities are explained by analysis of the microstructure. It is found that the hardness of the cladding is substantially higher than that of the substrate material with the corresponding composition. This is a consequence of hardening of each layer during deposition of the next layer and formation of nanosized spherical inclusions representing oxides of metals that make up the powder in the sample bulk. The density of these particles affects the overall hardness of the material and depends on the radiation power supplied. Individual properties of the material for various applications can be modified by appropriate selection of technological parameters of the printing process.
Laser Milling Ceramics Dioxide Zirconium and Disilicate of Lithium
2019, Panov, D. V., Petrovskiy, V. N., Ushakov, D. V., Osintsev, A. V., Dzhumaev, P. S., Polskiy, V. I., Петровский, Анатолий Николаевич, Осинцев, Андрей Вениаминович, Джумаев, Павел Сергеевич, Польский, Валерий Игоревич
© Published under licence by IOP Publishing Ltd.The paper considers the possibility of using laser milling technology for precision processing of ceramic samples from pre-sintered and sintered ceramics zirconia and lithium disilicate. To find the best radiation source were compared different lasers. To find highest removal rate with acceptable accuracy was studied influence laser and scanning system parameters on ceramics. Accuracy problem of laser milling was considered. Examples of surfaces of prostheses were made.
Microstructure and mechanical properties of stainless steel 316L obtained by Direct Metal Laser Deposition
2019, Bykovskiy, D. P., Ishkinyaev, E. D., Petrovskiy, V. N., Osintsev, A. V., Dzhumaev, P. S., Polskiy, V. I., Sergeev, K. L., Shchekin, A. S., Быковский, Дмитрий Петрович, Ишкиняев, Эмиль Дамирович, Петровский, Анатолий Николаевич, Осинцев, Андрей Вениаминович, Джумаев, Павел Сергеевич, Польский, Валерий Игоревич, Щекин, Александр Сергеевич
© Published under licence by IOP Publishing Ltd.The microstructure of 316L stainless steel obtained by layer-by-layer direct metal laser deposition is reviewed. Mechanical tests of the samples were performed in accordance with GOST 1497-84. Studies show that changes in power of laser radiation to grow parts lead to changes in their mechanical properties. The research shows dependencies between the strength characteristics of materials and the power of laser radiation. Causes of the forementioned changes are studied through the analysis of the microstructure. Nanosized inclusions of spherical shape were found in the process of studying the microstructure of materials. A study in the nature of the formation of these inclusions and their effect on the properties of the obtained material was performed.