Персона:
Климов, Валентин Вячеславович

Загружается...
Profile Picture
Email Address
Birth Date
Организационные подразделения
Организационная единица
Институт интеллектуальных кибернетических систем
Цель ИИКС и стратегия развития - это подготовка кадров, способных противостоять современным угрозам и вызовам, обладающих знаниями и компетенциями в области кибернетики, информационной и финансовой безопасности для решения задач разработки базового программного обеспечения, повышения защищенности критически важных информационных систем и противодействия отмыванию денег, полученных преступным путем, и финансированию терроризма.
Статус
Фамилия
Климов
Имя
Валентин Вячеславович
Имя

Результаты поиска

Теперь показываю 1 - 9 из 9
  • Публикация
    Открытый доступ
  • Публикация
    Открытый доступ
    Data Analysis using Augmented Reality Visualization
    (НИЯУ МИФИ, 2023) Epifanov, M. A.; Pilyugin, V. V.; Klimov, V. V.; Пилюгин, Виктор Васильевич; Епифанов, Михаил Александрович; Климов, Валентин Вячеславович
    In this paper, the authors describe the history of augmented reality and its applicability in scientific visualization and visual analytics. The study explores the benefits of using this technology for analysts studying spatial scenes and presents an advanced online platform for creating augmented reality projects used for educational purposes.
  • Публикация
    Только метаданные
    Intelligent Processing of Natural Language Search Queries Using Semantic Mapping for User Intention Extracting
    (2019) Chernyshov, A.; Balandina, A.; Klimov, V.; Климов, Валентин Вячеславович
    © 2019, Springer Nature Switzerland AG. Nowadays the leading world scientists and engineers center their attention to data mining and machine learning algorithms optimization and acceleration rather than inventing new ones. The natural language processing methods and tools are widely in use in production in the area of machine translation. The researches in the area of search engines and semantic search are mostly concentrated on data storage and further analysis. The majority of search engines use the huge amounts of previously accumulated user requests for predicting the search output without taking in attention this user intention by qualitative processing the request. In this paper we explore the idea of usage the semantic cognitive spaces for extracting the exact user intentions by analysis the natural language input requests. The final goal of our research is to develop a valid search query model for further usage in semantic search engines.
  • Публикация
    Открытый доступ
    Application of Long-Short Memory Neural Networks in Semantic Search Engines Development
    (2020) Klimov, V.; Balandina, A.; Chernyshov, A.; Климов, Валентин Вячеславович; Баландина, Анита Ивановна; Чернышов, Артем Андреевич
    © 2020 The Authors. Published by Elsevier B.V.This article provides an overview and description of the long-short memory approaches for the neural networks modelling and development. The authors show the possible application of these models and methods and consider its usage during the process of natural language understanding as the part of the semantic search system.
  • Публикация
    Открытый доступ
    Computerization of learning management process as a means of improving the quality of the educational process and student motivation
    (2020) Petrovskaya, A.; Pavlenko, D.; Feofanov, K.; Klimov, V.; Петровская, Анастасия Викторовна; Павленко, Дарья Александровна; Климов, Валентин Вячеславович
    © 2020 The Authors. Published by Elsevier B.V.The main objective of the study is to identify methods and algorithms for the dynamic generation of test cases, based on an analysis of students' academic performance using methods based on neural networks. Using these methods will help to provide a flexible approach in adapting control options to an individual level of knowledge, which in turn will allow the teacher to receive a more representative assessment of student knowledge, in accordance with the sections of the course being studied.
  • Публикация
    Открытый доступ
    Use of chat bots in Learning Management Systems
    (2020) Bezverhny, E.; Dadteev, K.; Barykin, L.; Nemeshaev, S.; Klimov, V.; Дадтеев, Казбек Маирбекович; Немешаев, Сергей Александрович; Климов, Валентин Вячеславович
    © 2020 The Authors. Published by Elsevier B.V.The main purpose of this article is to describe how to use chat bots in learning management systems. The substantiation of the importance of using chat bots, as well as the tasks that they can solve in the learning process. The classification of bots is given depending on the types of tasks they perform and their place in educational processes. In addition, methods and approaches to training chat bots operating in LMS are described.
  • Публикация
    Только метаданные
    Overview of Natural Language Processing Approaches in Modern Search Engines
    (2020) Chernyshov, A.; Balandina, A.; Klimov, V.; Чернышов, Артем Андреевич; Баландина, Анита Ивановна; Климов, Валентин Вячеславович
    © 2020, Springer Nature Switzerland AG.This article provides an overview of modern natural language processing and understanding methods. All the monitored technologies are covered in the context of search engines. The authors do not consider any particular implementations of the search engines; however take in consideration some scientific research to show natural language processing techniques application prospects in the informational search industry.
  • Публикация
    Только метаданные
    Development of Graph-Theoretical Model and Operations on Graph Representations of Ontologies as Applied to Information Retrieval Tasks
    (2020) Maksimova, A.; Klimov, V.; Antonov, N.; Климов, Валентин Вячеславович
    © 2020, Springer Nature Switzerland AG.This paper presents a graph-theoretical model of ontologies of subject domains. An ontology represented as a weighted graph. At the vertices of the graph are concepts. The edges of the graph marked the relationship between concepts. In addition, the basic operations on the ontology graph representations introduced for ontology editing in the semantic search system.
  • Публикация
    Только метаданные
    Subjective Perception Space of Musical Passages
    (2020) Krysko, M. D.; Vartanov, A. V.; Vartanova, I. I.; Klimov, V. V.; Климов, Валентин Вячеславович
    © 2020, Springer Nature Switzerland AG.An experimental construction of the subjective (emotional) space of perception of musical sound fragments used in the GarageBand app for iOS to help the composer has been carried out. A representative set of 20 sound fragments was selected on the basis of an experiment on the classification of all samples from this database, which were further evaluated in 3 types of experiments: on the basis of multidimensional scaling of differences between them, on the basis of direct scaling of emotional qualities (Semantic Differential Method for 25 adjective pairs), based on direct scaling on three SAM scales (in the PXLab variant). As a result, the individual features (points of view) of these sound samples were investigated and a correlation comparison of the obtained results was carried out. As a result, the interrelation of all used scales is shown and a way of their integration into a four- dimensional spherical model of emotions is presented.