Персона:
Фролов, Сергей Михайлович

Загружается...
Profile Picture
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт лазерных и плазменных технологий
Стратегическая цель Института ЛаПлаз – стать ведущей научной школой и ядром развития инноваций по лазерным, плазменным, радиационным и ускорительным технологиям, с уникальными образовательными программами, востребованными на российском и мировом рынке образовательных услуг.
Статус
Фамилия
Фролов
Имя
Сергей Михайлович
Имя

Результаты поиска

Теперь показываю 1 - 5 из 5
  • Публикация
    Только метаданные
    Mild Detonation Initiation in Rotating Detonation Engines: An Experimental Study of the Deflagration-to-Detonation Transition in a Semiconfined Flat Slit Combustor with Separate Supplies of Fuel and Oxidizer
    (2023) Shamshin, I. O.; Ivanov, V. S.; Aksenov, V. S.; Frolov, S. M.; Аксенов, Виктор Серафимович; Фролов, Сергей Михайлович
    Rotating detonation engines (RDEs) are considered to be promising thrusters for aerospace propulsion. Detonation initiation in RDEs can be accompanied by a destructive explosion of an excess volume of the fuel mixture in the combustor. To exclude this phenomenon, a “mild” rather than “strong” initiation of detonation is required. For the mild initiation of detonation in RDEs, it is necessary to ignite a mixture of a certain minimum volume sufficient for deflagration-to-detonation transition (DDT). In this study, the critical conditions for detonation initiation through DDT in a semiconfined slit combustor simulating the RDE combustor with a separate supply of ethylene and oxygen diluted with nitrogen (from 0 to 40%) were obtained experimentally. It turned out that for the mild initiation of detonation, it is necessary to ignite the mixture upon reaching the critical (minimum) height of the combustible mixture layer. Thus, for the mild initiation of detonation in the undiluted C2H4 + 3O2 mixture filling such a slit combustor, the height of the mixture layer must exceed the slit width by approximately a factor of 12. In terms of the transverse size of the detonation cell λ the minimum layer height of such mixtures in experiments is ~150λ. Compared to the experiments with the premixed composition, the critical height of the layer is 20% larger, which is explained by the finite rate of mixing. As the degree of oxygen dilution with nitrogen increases, the critical height of the layer increases, and the role of finite rate mixing decreases: the results no longer depend on the method of combustible mixture formation.
  • Публикация
    Открытый доступ
    Ion Sensors for Pulsed and Continuous Detonation Combustors
    (2023) Frolov, S. M.; Shamshin, I. O.; Aksenov, V. S.; Ivanov, V. S.; Фролов, Сергей Михайлович; Аксенов, Виктор Серафимович
    Presented in the article are the design and operation principles of ion sensors intended for detecting the propagating reaction fronts, the deflagration/detonation mode, apparent subsonic/supersonic propagation velocity of the reaction front, and duration of heat release by measuring the ion current in the reactive medium. The electrical circuits for ion sensors without and with intermediate amplifiers, with short response time and high sensitivity, as well as with the very wide dynamic range of operation in the reactive media with highly variable temperature and pressure, are provided and discussed. The main advantages of ion sensors are their very short response time of about 1 ms, versatility of design, and capability of detecting and monitoring reaction fronts of different intensities directly in combustion chambers. Several examples of ion sensor applications in sensing deflagration-to-detonation transition in pulsed detonation engines and developed detonations in rotating detonation engines operating on different fuel–air and fuel–oxygen mixtures are presented and discussed.
  • Публикация
    Открытый доступ
    Fast Deflagration-to-Detonation Transition in Helical Tubes
    (2023) Shamshin, I. O.; Aksenov, V. S.; Kazachenko, M. V.; Frolov, S. M.; Аксенов, Виктор Серафимович; Фролов, Сергей Михайлович
    When designing a new type of power plants operating on pulsed detonations of gaseous or liquid fuels, the concept of fast deflagration-to-detonation transition (FDDT) is used. According to the concept, a flame arising from a weak ignition source must accelerate so fast as to form an intense shock wave at a minimum distance from the ignition source so that the intensity of the shock wave is sufficient for fast shock-to-detonation transition by some additional arrangements. Hence, the FDDT concept implies the use of special means for flame acceleration and shock wave amplification. In this work, we study the FDDT using a pulsed detonation tube comprising a Shchelkin spiral and a helical tube section with ten coils as the means for flame acceleration and shock amplification (focusing), respectively. To attain the FDDT at the shortest distances for fuels of significantly different detonability, the diameter of the pulsed detonation tube is taken close to the limiting diameter of detonation propagation for air mixtures of regular hydrocarbon fuels (50 mm). Experiments are conducted with air mixtures of individual gaseous fuels (hydrogen, methane, propane, and ethylene) and binary fuel compositions (methane–hydrogen, propane–hydrogen, and ethylene–hydrogen) at normal pressure and temperature conditions. The use of a helical tube with ten coils is shown to considerably extend the fuel-lean concentration limits of detonation as compared to the straight tube and the tube with a helical section with two coils.
  • Публикация
    Открытый доступ
    Deflagration-to-Detonation Transition in a Semi-Confined Slit Combustor Filled with Nitrogen Diluted Ethylene-Oxygen Mixture
    (2023) Shamshin, I. O.; Ivanov, V. S.; Aksenov, V. S.; Frolov, S. M.; Аксенов, Виктор Серафимович; Фролов, Сергей Михайлович
    The conditions for the mild initiation of the detonation of homogeneous stoichiometric ethylene-oxygen mixtures diluted with nitrogen up to ~40%vol. in a planar semi-confined slit-type combustor with a slit 5.0 В± 0.4 mm wide, simulating the annular combustor of a Rotating Detonation Engine (RDE), are determined experimentally using self-luminous high-speed video recording and pressure measurements. To ensure the mild detonation initiation, the fuel mixture in the RDE combustor must be ignited upon reaching a certain limiting (minimal) fill with the mixture and the arising flame must be transformed to a detonation via deflagration-to-detonation transition (DDT). Thus, for mild detonation initiation in a C2H4 + 3O2 mixture filling the slit, the height of the mixture layer must exceed the slit width by approximately 10 times (~50 mm), and for the C2H4 + 3(O2 + 2/5 N2) mixture, by approximately 60 times. The limiting height of the mixture layer required for DDT exhibits a sharp increase at a nitrogen-to-oxygen mole ratio above 0.25. Compared to the height of the detonation waves continuously rotating in the RDE combustor in the steady-state operation mode, for a mild start of the RDE, the fill of the combustor with the explosive mixture to a height of at least four times more is required.
  • Публикация
    Открытый доступ
    Computational Study of Deflagration-to-Detonation Transition in a Semi-Confined Slit Combustor
    (2023) Ivanov, V. S.; Shamshin, I. O.; Frolov, S. M.; Фролов, Сергей Михайлович
    Systematic three-dimensional numerical simulations of flame acceleration and deflagration-to-detonation transition (DDT) in a semi-confined flat slit combustor are performed. The combustor is assumed to be partly filled with the stoichiometric ethylene–oxygen mixture at normal pressure and temperature conditions. The objective of the study is to reveal the conditions for DDT in terms of the minimum height of the combustible mixture layer in the slit, the maximum dilution of the mixture with nitrogen and the maximum slit width. The results of the calculations are compared with the available experimental data. The calculation results are shown to agree satisfactorily with the experimental data on the slit-filling dynamics, flame structure, the occurrence of the preflame self-ignition center, DDT, and detonation propagation. DDT occurs in the layer at a time instant when the flame accelerates to a velocity close to 750 m/s. DDT occurs near the slit bottom due to the formation of the self-ignition center ahead of the leading edge of the flame as a result of shock wave reflections from the walls of injector holes at the slit bottom and from the corners of the conjugation of the slit bottom and side walls. The decrease in the height of the mixture layer, the dilution of the mixture with nitrogen, and the increase in the slit width are shown to slow down flame acceleration in the slit and increase the DDT run-up distance and time until DDT failure. The obtained results are important for determining the conditions for mild initiation of detonation via DDT in semi-confined annular RDE combustors.