Персона: Самохвалов, Павел Сергеевич
Загружается...
Email Address
Birth Date
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Фамилия
Самохвалов
Имя
Павел Сергеевич
Имя
6 results
Результаты поиска
Теперь показываю 1 - 6 из 6
- ПубликацияТолько метаданныеExperimental and theoretical study of a flow photoreactor operating in the strong light-matter coupling regime(2024) Granizo, E. A.; Kriukova, I. S.; Samokhvalov, P. S.; Nabiec, I. R.; Гранисо Роман, Эвелин Алехандра; Крюкова, Ирина Сергеевна; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович
- ПубликацияТолько метаданныеEnhanced fluorescence emission of a single quantum dot in a porous silicon photonic crystal-plasmonic hybrid resonator(2024) Granizo, E.; Kriukova, I.; Samokhvalov, P.; Nabiev, I.; Гранисо Роман, Эвелин Алехандра; Крюкова, Ирина Сергеевна; Самохвалов, Павел Сергеевич; Набиев, Игорь РуфаиловичAbstract Currently, much interest is attracted to investigating the potential of hybrid systems that exhibit plasmon-induced photoluminescence (PL) enhancement of quantum emitters in terms of optoelectronics and biosensing applications. The implementation of these systems based on photonic microcavities offers benefits due to a stronger localization of the field within the resonant cavity. Porous silicon is one of interesting materials for engineering such microcavities thanks to the simplicity of its fabrication and the possibility to embed emitters from the solution into a ready-made resonator. In this theoretical study, the fluorescence enhancement of a quantum dot (QD) in a hybrid system based on a porous silicon microcavity (pSiMC) and silver nanoplatelets (AgNPs) was investigated using finite element method (FEM) numerical simulations. For this purpose, infinite arrays were simulated by using a periodic unit cell. The pSiMC was designed as two Ћ? /4 distributed Bragg reflectors with alternating refractive indices and a cavity layer of a double thickness between them. For comparison, simulations were also performed for an AgNP and a QD in a reference monolayer with a constant refractive index without a microcavity structure. The results show QD fluorescence enhancement in the AgNP/pSiMC hybrid system, mainly due to the higher excitation rate.
- ПубликацияТолько метаданныеMicrofluidics and Nanofluidics in Strong Light–Matter Coupling Systems(2024) Granizo, E.; Kriukova, I.; Escudero-Villa, P.; Samokhvalov, P.; Nabiev, I.; Гранисо Роман, Эвелин Алехандра; Крюкова, Ирина Сергеевна; Самохвалов, Павел Сергеевич; Набиев, Игорь РуфаиловичThe combination of micro- or nanofluidics and strong light-matter coupling has gained much interest in the past decade, which has led to the development of advanced systems and devices with numerous potential applications in different fields, such as chemistry, biosensing, and material science. Strong light-matter coupling is achieved by placing a dipole (e.g., an atom or a molecule) into a confined electromagnetic field, with molecular transitions being in resonance with the field and the coupling strength exceeding the average dissipation rate. Despite intense research and encouraging results in this field, some challenges still need to be overcome, related to the fabrication of nano- and microscale optical cavities, stability, scaling up and production, sensitivity, signal-to-noise ratio, and real-time control and monitoring. The goal of this paper is to summarize recent developments in micro- and nanofluidic systems employing strong light-matter coupling. An overview of various methods and techniques used to achieve strong light-matter coupling in micro- or nanofluidic systems is presented, preceded by a brief outline of the fundamentals of strong light-matter coupling and optofluidics operating in the strong coupling regime. The potential applications of these integrated systems in sensing, optofluidics, and quantum technologies are explored. The challenges and prospects in this rapidly developing field are discussed.
- ПубликацияТолько метаданныеPolaritonic Photocatalysis and Polariton-driven Control of Energy Relaxation Pathways in a Tunable Microcavity(2023) Granizo, E.; Knysh, A.; Sokolov, P.; Samokhvalov, P.; Nabiev, I.; Гранисо Роман, Эвелин Алехандра; Кныш, Александр Александрович; Соколов, Павел Михайлович; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович
- ПубликацияТолько метаданныеTunable Fabry–Perot Microcavity Based on Boron Nitride and Rhodamine 6G(2023) Granizo, E. A.; Samokhvalov, P. S.; Nabiev, I. R.; Гранисо Роман, Эвелин Алехандра; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович
- ПубликацияТолько метаданныеHierarchical plasmon-optical cavities based on porous silicon photonic crystals for light-matter coupling with quantum emitters(2023) Kriukova, I. S.; Granizo, E. A.; Samokhvalov, P. S.; Nabiev, I.; Krivenkov, V.; Крюкова, Ирина Сергеевна; Гранисо Роман, Эвелин Алехандра; Самохвалов, Павел Сергеевич