Персона: Корнеев, Филипп Александрович
Загружается...
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт лазерных и плазменных технологий
Стратегическая цель Института ЛаПлаз – стать ведущей научной школой и ядром развития инноваций по лазерным, плазменным, радиационным и ускорительным технологиям, с уникальными образовательными программами, востребованными на российском и мировом рынке образовательных услуг.
Статус
Фамилия
Корнеев
Имя
Филипп Александрович
Имя
4 results
Результаты поиска
Теперь показываю 1 - 4 из 4
- ПубликацияТолько метаданныеInvestigation of spontaneous magnetic fields, electron and ion emission in laser-produced plasma experiments at PALS(2019) Pisarczyk, T.; Batani, D.; Dudzak, R.; Zaras-Szydlowska, A.; Gus'kov, S. Yu.; Korneev, P. h.; Kochetkov, J.; Martynenko, A. S.; Корнеев, Филипп Александрович; Кочетков, Юрий Владимирович
- ПубликацияТолько метаданныеKinetic plasma waves carrying orbital angular momentum(2019) Blackman, D. R.; Nuter, R.; Tikhonchuk, V. T.; Korneev, P. h.; Корнеев, Филипп АлександровичThe structure of Langmuir plasma waves carrying a finite orbital angular momentum is revised in the paraxial approximation. It is shown that the kinetic effects related to higher-order momenta of the electron distribution function lead to coupling of Laguerre-Gaussian modes and result in a modification of the wave dispersion and damping. The theoretical analysis is compared to the three-dimensional particle-in-cell numerical simulations for a mode with orbital momentum l = 2. It is demonstrated that propagation of such a plasma wave is accompanied with generation of quasistatic axial and azimuthal magnetic fields which result from the orbital and longitudinal momenta transported with the wave, respectively.
- ПубликацияТолько метаданныеMagnetic field generation from a coil-shaped foil by a laser-triggered hot-electron current(2019) Brantov, A. V.; Bychenkov, V. Yu.; Korneev, P. h.; Корнеев, Филипп АлександровичA strong electron current triggered by a femtosecond relativistically intense laser pulse in a foil coil-like target is shown to be able to generate a solenoidal-type extremely strong magnetic field. The magnetic field lifetime sufficiently exceeds the laser pulse duration and is defined mainly by the target properties. The process of the magnetic field generation was studied with 3D PIC simulations. It is demonstrated that the pulse and the target parameters allow controlling the field strength and duration. The scheme studied is of great importance for laser-based magnetization technologies.
- ПубликацияОткрытый доступLaboratory investigation of particle acceleration and magnetic field compression in collisionless colliding fast plasma flows(2019) Higginson, D. P.; Ruyer, C.; Riquier, R.; Moreno, Q.; Korneev, P. h.; Pikuz, S. A.; Корнеев, Филипп АлександровичIn many natural phenomena in space (cosmic-rays, fast winds), non-thermal ion populations are produced, with wave-particle interactions in self-induced electromagnetic turbulence being suspected to be mediators. However, the processes by which the electromagnetic energy is bestowed upon the particles is debated, and in some cases requires field compression. Here we show that laboratory experiments using high-power lasers and external strong magnetic field can be used to infer magnetic field compression in the interpenetration of two collisionless, high-velocity (0.01-0.1c) quasi-neutral plasma flows. This is evidenced through observed plasma stagnation at the flows collision point, which Particle-in-Cell (PIC) simulations suggest to be the signature of magnetic field compression into a thin layer, followed by its dislocation into magnetic vortices. Acceleration of protons from the plasma collision is observed as well. As a possible scenario, with 1D and 2D PIC simulations we consider a compression of the vortices against dense plasma remnants.