Персона: Тенишев, Андрей Вадимович
Загружается...
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Статус
Руководитель научной группы "Ядерные топливные материалы"
Фамилия
Тенишев
Имя
Андрей Вадимович
Имя
6 results
Результаты поиска
Теперь показываю 1 - 6 из 6
- ПубликацияТолько метаданныеEffect of the Thermomechanical Compacting Conditions on the Electrical Conductivity of an Al2O3/Graphene Composite Material(2019) Stolyarov, V. V.; Zholnin, A. G.; Tenishev, A. V.; Тенишев, Андрей Вадимович© 2019, Pleiades Publishing, Ltd.Abstract—The influence of the graphene content (up to 2 wt %) and the sintering conditions on the temperature dependence of the electrical resistance of an Al2O3/graphene composite material in the temperature range 20–1600°C is studied. The composite material is fabricated from a mixture of initial powders by spark plasma sintering and hot pressing. The electrical resistance of the compacted material is found to depend on the pressing force and a heating method. The composite material prepared by hot pressing has the minimum electrical resistivity (0.9 Ω m).
- ПубликацияТолько метаданныеProduction of Aluminum-Graphite Composite by Spark Plasma Sintering(2019) Rubinkovskiy, N. A.; Shornikov, D. P.; Tenishev, A. V.; Zaluzhnyi, A. G.; Zholnin, A. G.; Шорников, Дмитрий Павлович; Тенишев, Андрей Вадимович; Залужный, Александр Георгиевич© 2019, Springer Science+Business Media, LLC, part of Springer Nature.An aluminum-graphite composite was obtained by spark plasma sintering. The graphite particle size, compaction temperature, and soaking time were shown to influence the aluminum carbide formation process. It is demonstrated that the use of larger graphite plates decreases Al4C3 formation by almost a factor of two. The influence of the graphite content on the density, CLTE, and thermal conductivity of the composite was studied. It was found that for graphite weight content above 70% the thermophysical properties of compacts degrade significantly because large numbers of pores are formed.
- ПубликацияТолько метаданныеDetermination of Density and Pore Size Distribution in Uranium Dioxide Fuel Pellet by Image Analysis of its Cross-Sectional Structure(2019) Devyatko, Yury N.; Khomyakov, Oleg V.; Tenishev, Andrey V.; Mikhalchik, Vladimir V.; Shornikov, Dmitry P.; Хомяков, Олег Владимирович; Тенишев, Андрей Вадимович; Михальчик, Владимир Валерьевич; Шорников, Дмитрий ПавловичThe paper proposes a method for reducing the true pore size in oxide nuclear fuel using a well-known histogram for the distribution of the pores cross sections across the polished section. It is shown that the problem of constructing a continuous pore size distribution function from the pore size distribution histogram is incorrect. Histograms showing pore distributions across the polished sections of oxide nuclear fuel sintered under various conditions are obtained. The Scheil-Saltykov method was used to reduce histograms for 3D pore size distributions in uranium oxide fuel.
- ПубликацияТолько метаданныеEffect of Aluminum Oxide Powder Particle Size on Spark Plasma Sintering Results(2019) Rubinkovskiy, N. A.; Shornikov, D. P.; Tenishev, A. V.; Zaluzhnyi, A. G.; Zholnin, A. G.; Шорников, Дмитрий Павлович; Тенишев, Андрей Вадимович; Залужный, Александр Георгиевич© 2019, Springer Science+Business Media, LLC, part of Springer Nature.The results of a comparative study of compacts obtained by spark plasma sintering from nano- and ultradisperse (UD) aluminum oxide powders with spherically shaped particles are reported. It is shown that the compacts obtained from UD-powder have higher density and greater strength, microhardness, and structural uniformity with smaller grains than compacts obtained from nanopowder. Preliminary magnetic-pulse compaction of powders prior to sintering improves the characteristics of both compacts but higher density and strength with smaller grains are achieved in compacts obtained from UD-powder. In both cases of preliminary preparation the UD-powder compacts have advantages over nanopowder compacts.
- ПубликацияТолько метаданныеEffect of Nitride Nuclear Fuel Structure and Phase Composition on Fuel-Rod Life(2019) Krivov, M. P.; Kireev, G. A.; Tenishev, A. V.; Тенишев, Андрей Вадимович© 2019, Springer Science+Business Media, LLC, part of Springer Nature.The behavior of mixed uranium-plutonium nitride fuel and uranium nitride was studied by means of thermogravimetry at high temperatures (to 2173 K) in a helium flow. The mass loss of the nitride samples was found in the low temperature range (<1773 K), which is not associated with decomposition of uranium or plutonium mononitrides. The mass loss occurs in two stages and is accompanied by the release of nitrogen. It is shown that nitride fuel can contain up to several percent of uranium sesquinitride U2N3, which decomposes in the indicated temperature range and can strongly affect pellet integrity and fuel-rod life during operation.
- ПубликацияТолько метаданныеFabrication of a High-Density Compacted Material from a Coarse-Grained Silicon Carbide Powder by Magnetic Pulsed Pressing Combined with Spark Plasma Sintering(2019) Shornikov, D. P.; Tenishev, A. V.; Kazakova, V. N.; Zholnin, A. G.; Шорников, Дмитрий Павлович; Тенишев, Андрей Вадимович© 2019, Pleiades Publishing, Ltd.Abstract: The application of magnetic pulsed pressing (MPP) as preliminary treatment of a coarse-grained silicon carbide powder before spark plasma sintering (SPS) is shown to increase the compacted material density significantly. The increase in the material density is maximal after one MPP pulse. An increase in the number of pulses or the discharge voltage does not enhance this effect. It is experimentally shown that the amount of a fine fraction having formed in the powder subjected to MPP is too low for the maximum compacted material density to be reached by SPS.