Персона:
Кабашин, Андрей Викторович

Загружается...
Profile Picture
Email Address
Birth Date
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Руководитель научной группы "Лаборатория «Бионанофотоники"
Фамилия
Кабашин
Имя
Андрей Викторович
Имя

Результаты поиска

Теперь показываю 1 - 2 из 2
  • Публикация
    Только метаданные
    Bi-Modal Nonlinear Optical Contrast from Si Nanoparticles for Cancer Theranostics
    (2019) Rogov, A.; Ryabchikov, Y. V.; Geloen, A.; Tishchenko, I.; Kharin, A. Y.; Lysenko, V.; Zavestovskaya, I. N.; Kabashin, A. V.; Timoshenko, V. Y.; Завестовская, Ирина Николаевна; Кабашин, Андрей Викторович; Тимошенко, Виктор Юрьевич
    © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Presenting a safe alternative to conventional compound quantum dots and other functional nanostructures, nanosilicon can offer a series of breakthrough hyperthermia-based therapies under near-infrared, radiofrequency, ultrasound, etc., excitation, but the size range to sensitize these therapies is typically too large (>10 nm) to enable efficient imaging functionality based on photoluminescence properties of quantum-confined excitonic states. Here, it is shown that large Si nanoparticles (NPs) are capable of providing two-photon excited luminescence (TPEL) and second harmonic generation (SHG) responses, much exceeding that of smaller Si NPs, which promises their use as probes for bi-modal nonlinear optical bioimaging. It is finally demonstrated that the combination of TPEL and SHG channels makes possible efficient tracing of both separated Si NPs and their aggregations in different cell compartments, while the resolution of such an approach is enough to obtain 3D images. The obtained bi-modal contrast provides lacking imaging functionality for large Si NPs and promises the development of novel cancer theranostic modalities on their basis.
  • Публикация
    Только метаданные
    Laser-Processed Nanosilicon: A Multifunctional Nanomaterial for Energy and Healthcare
    (2019) Singh, A.; Swihart, M. T.; Kabashin, A. V.; Zavestovskaya, I. N.; Prasad, P. N.; Кабашин, Андрей Викторович; Завестовская, Ирина Николаевна
    Copyright © 2019 American Chemical Society.This review describes promising laser-based approaches to produce silicon nanostructures, including laser ablation of solid Si targets in residual gases and liquids and laser pyrolysis of silane. These methods are different from, and complementary to, widely used porous silicon technology and alternative synthesis routes. One can use these methods to make stable colloidal dispersions of silicon nanoparticles in both organic and aqueous media, which are suitable for a multitude of applications across the important fields of energy and healthcare. Size tailoring allows production of Si quantum dots with efficient photoluminescence that can be tuned across a broad spectral range from the visible to near-IR by varying particle size and surface functionalization. These nanoparticles can also be integrated with other nanomaterials to make multifunctional composites incorporating magnetic and/or plasmonic components. In the energy domain, this review highlights applications to photovoltaics and photodetectors, nanostructured silicon anodes for lithium ion batteries, and hydrogen generation from water. Application to nanobiophotonics and nanomedicine profits from the excellent biocompatibility and biodegradability of nanosilicon. These applications encompass several types of bioimaging and various therapies, including photodynamic therapy, RF thermal therapy, and radiotherapy. The review concludes with a discussion of challenges and opportunities in the applications of laser-processed nanosilicon.