Персона: Боговалов, Сергей Владимирович
Загружается...
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт нанотехнологий в электронике, спинтронике и фотонике
Институт ИНТЭЛ занимается научной деятельностью и подготовкой специалистов в области исследования физических принципов, проектирования и разработки технологий создания компонентной базы электроники гражданского и специального назначения, а также построения современных приборов на её основе.
Наша основная цель – это создание и развитие научно-образовательного центра мирового уровня в области наноструктурных материалов и устройств электроники, спинтроники, фотоники, а также создание эффективной инновационной среды в области СВЧ-электронной и радиационно-стойкой компонентной базы, источников ТГц излучения, ионно-кластерных технологий материалов.
Статус
Фамилия
Боговалов
Имя
Сергей Владимирович
Имя
4 results
Результаты поиска
Теперь показываю 1 - 4 из 4
- ПубликацияОткрытый доступOn the Possibility of Achieving Optimal Operating Modes of Hyperspeed Model Gas Centrifuges: 3D Numerical Simulation(2024) Bogovalov, S. V.; Tronin, I. V.; Vasiliev, A. V.; Боговалов, Сергей Владимирович; Тронин, Иван Владимирович; Васильев, Александр Владиславович
- ПубликацияОткрытый доступPhysics of "cold" disk accretion onto black holes driven by magnetized winds(2019) Bogovalov, S.; Боговалов, Сергей Владимирович© 2019 by the authors. Disk accretion onto black holes is accompanied by collimated outflows (jets). In active galactic nuclei (AGN), the kinetic energy flux of the jet (jet power or kinetic luminosity) may exceed the bolometric luminosity of the disk by a few orders of magnitude. This may be explained in the framework of the so called "cold" disk accretion. In this regime of accretion, the disk is radiatively inefficient because practically all the energy released at the accretion is carried out by the magnetized wind. This wind also provides efficient loss of the angular momentum by the matter in the disk. In this review, the physics of the accretion driven by the wind is considered from first principles. It is shown that the magnetized wind can efficiently carry out angular momentum and energy of the matter of the disk. The conditions when this process dominates conventional loss of the angular momentum due to turbulent viscosity are discussed. The "cold" accretion occurs when the viscous stresses in the disk can be neglected in comparison with impact of the wind on the accretion. Two problems crucial for survival of the model of "cold" accretion are considered. The first one is existence of the magnetohydrodynamical solutions for disk accretion purely due to the angular momentum loss by the wind. Another problem is the ability of the model to reproduce observations which demonstrate existence of the sources with kinetic power of jets 2-3 orders of magnitude exceeding the bolometric luminosity of disks. The solutions of the problem in similar prescriptions and numerical solutions without such an assumption are discussed. Calculations of the "unavoidable" radiation from the "cold" disk and the ratio of the jet power of the SMBH to the bolometric luminosity of the accretion disk around a super massive black hole are given in the framework of the Shakura and Sunyaev paradigm of an optically thick a-disk. The exploration of the Fundamental Plane of Black Holes allows us to obtain semi empirical equations that determine the bolometric luminosity and the ratio of the luminosities as functions of the black hole mass and accretion rate.
- ПубликацияОткрытый доступModelling the interaction between relativistic and non-relativistic winds in binary pulsar systems: strong magnetization of the pulsar wind(2019) Bogovalov, S. V.; Khangulyan, D.; Koldoba, A.; Ustyugova, G. V.; Aharonian, F.; Боговалов, Сергей ВладимировичWe present a numerical study of the properties of the flow produced by the collision of a magnetized anisotropic pulsar wind with the circumbinary environment. We focus on studying the impact of the high wind magnetization on the geometrical structure of the shocked flow. This work is an extension of our earlier studies that focused on a purely hydrodynamic interaction and weak wind magnetization. We consider the collision in the axisymmetric approximation, i.e. the pulsar rotation axis is assumed to be oriented along the line between the pulsar and the optical star. The increase of the magnetization results in the expansion of the opening cone in which the shocked pulsar wind propagates. This effect is explained in the frameworks of the conventional theory of collimation of magnetized winds. This finding has a direct implication for scenarios that involve Doppler boosting as the primary mechanism behind the GeV flares detected with the Fermi Large Area Telescope from PSR B1259-63/LS 2883. The maximum enhancement of the apparent emission is determined by the ratio of 4 pi to the solid in which the shocked pulsar wind propagates. Our simulations suggest that this enhancement factor is decreased by the impact of the magnetic field.
- ПубликацияОткрытый доступWaves in gas centrifuges: A review(2020) Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.; Боговалов, Сергей Владимирович; Кислов, Владимир Александрович; Тронин, Иван Владимирович© 2020 Published under licence by IOP Publishing Ltd.Waves in gas centrifuges are generated by scoops for withdrawal of the gas. The physics of the waves and their role in the gas dynamics are under discussion. Strong centrifugal and Coriolis forces have dramatic impact on the properties and dispersion relation of the waves. The conventional sound, vertex and entropy waves split into 3 families with different dispersion. The entropy wave has zero velocity of propagation but variation of temperature in this wave is accompanied by toroidal motion. Pressure is not perturbed. The rest two families of the waves have nonzero velocities of propagation. Upper family has frequency above doubled frequency of rotation of the rotor with exceptional case of the wave (named acoustic wave) propagating exactly in the axial direction. This wave propagates with the conventional sound velocity and is polarized only in the axial direction. Unique property of this wave is the weakest damping due to the molecular viscosity and heat conductivity. All other waves are damped on distances compared with their wavelength. At the conventional parameters of the IGUASU centrifuge the acoustic waves are damped predominantly due to the viscous interaction and heat exchange with the wall of the rotor. This wave is able to propagate on the distance of ≤ 1 m. Numerical experiments show that the waves can affect the axial circulation and gas content in the centrifuge and produce phenomena of resonances. Possible impact of the waves on the process of separation of the isotopes is also under discussion.